《大地测量学基础》word版.doc_第1页
《大地测量学基础》word版.doc_第2页
《大地测量学基础》word版.doc_第3页
《大地测量学基础》word版.doc_第4页
《大地测量学基础》word版.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大地测量学基础一、 大地测量的基本概念1、大地测量学的定义它是一门量测和描绘地球表面的科学。它也包括确定地球重力场和海底地形。也就是研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。测绘学的一个分支。主要任务是测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息。是一门地球信息学科。是一切测绘科学技术的基础。测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。 大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。 大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料。 内容和分支学科解决大地测量学所提出的任务,传统上有两种方法:几何法和物理法。随着20世纪50年代末人造地球卫星的出现,又产生了卫星法。所以现代大地测量学包括几何大地测量学、物理大地测量学和卫星大地测量学3个主要部分。 几何法是用一个同地球外形最为接近的几何体(即旋转椭球,称为参考椭球)代表地球形状,用天文大地测量方法测定这个椭球的形状和大小,并以它的表面为基础推算地面点的几何位置。 物理法是从物理学观点出发研究地球形状的理论。用一个同全球平均海水面位能相等的重力等位面(大地水准面)代表地球的实际形状,用地面重力测量数据研究大地水准面相对于地球椭球面的起伏。 卫星法是利用卫星在地球引力场中的轨道运动,从尽可能均匀分布在整个地球表面上的十几个至几十个跟踪站,观测至卫星瞬间位置的方向、距离或距离差。积累对不同高度和不同倾角的卫星的长期(数年)观测资料,可以综合解算地球的几何参数和物理参数,以及地面跟踪站相对于地球质心的几何位置。 2、大地测量学的任务确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。 研究月球及太阳系行星的形状及其重力场。 建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。 研究为获得高精度测量成果的仪器和方法等。 研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。 研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。3、大地测量学的基本分支 a 几何大地测量学:基本任务是确定地球的形状和大小及确定地面点的几何位置。b 物理大地测量学:基本任务是用物理方法(重力测量)确定地球形状及其外部重力场。C 空间大地测量学:以人造地球卫星及格其他空间探测器为代表的空间大地测量的理论、技术与方法。几何大地测量学 研究用几何方法测定地球形状和大小以及地面点几何位置的学科,亦称天文大地测量学几何大地测量采用一个旋转椭球代表地球形状,用几何方法测定它的形状和大小,并以该椭球面为参考研究和测定大地水准面,以及建立大地坐标系。 地球椭球的形状和大小以其扁率和长半轴表示。地面点的几何位置以其在大地坐标系中的大地经度、纬度和大地高程表示。测定地球形状,是指测定大地水准面形状,也就是测定大地水准面对于椭球面的差距。 4、大地测量学的基本体系 a 应用大地测量学:以研究建立国家大地测量控制网为中心内容。b 椭球大地测量学:研究坐标系建立及地球椭球性质以及投影数学变换为主要内容。c大地天文测量学:以研究测量天文经度、纬度及天文方位角为中心内容。d 大地重力测量学:以研究重力场及重力测量方法为中心内容。e 测量平差:以研究大地测量控制网平差计算为主要内容。5、水准面、大地水准面、似大地水准面的概念、高程系统a. 水准面:图2-1 大地水准面在地面上,处处与重力方向垂直的连续曲面,水准面等于重力等位面。b.大地水准面:大地测量学所研究的是在整体上非常接近于地球自然表面的水准面。设想与平均海水面相重合,不受潮汐、风浪及大气压变化影响,并延伸到大陆下面处处与铅垂线相垂直的水准面的连续封闭曲面。由它包围的形体称为大地体。c. 似大地水准面:图2-2 参考椭球体由于地球质量特别是外层质量分布的不均性,使得大地水准面形状非常复杂。引入不需要任何关于地壳结构方面的假设而确定的似大地水准面,它与大地水准面很接近。6、参考椭球体、参心坐标系、地心坐标系、地心地固坐标系参考椭球体:大地水准面是不规则曲面,不便于进行测量数据处理。为便于准确计算测量成果,用一个接近大地体的旋转椭圆球体作为地球的参考大小和形状称为参考椭球体,称其外表为参考椭球面。参心坐标系:具有确定参数(长半径a和扁率),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭圆。以参考椭球为基准的坐标系,叫参心坐标系。图2-3 参考椭球体几何参数确定椭球的中心位置称为椭球定位。确定椭球短轴的指向称为定向,椭球的短轴平行于地球的自转轴。由椭圆公式:X2/a2+y2/a2+z2/b2=1 (2-1)=(a-b)/aa,b为参考椭球体的几何参数,a为长轴半径,b为短轴半径,为椭球体的扁率。不同的坐标系采用不同的参考椭圆。例如:1954年北京坐标系、1980年国家大地坐标系。总地球椭球除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球。以总地球椭球为基准的坐标系,叫地心坐标系。无论是参心坐标系还是地心坐标系均可分为空间直角坐标系和大地坐标系两种,它们都与地球体固连在一起,与地球同步运动,因而又称为地固坐标系,以地心为原点的地固坐标系则称为地心地固坐标系(ECEF)。地心地固大地坐标系地球椭球的中心与地球质心重合,椭球面与大地水准面在全球范围内最佳符合,椭球的短轴与地球自转轴重合,大地纬度为过地面点的椭球法线与椭球赤道面的夹角,大地经度为过地球面点的椭球子午面与格林尼治的大地子午面之间的夹角,大地高为地面点沿椭球法线至椭球面的距离。例如:WGS-84世界大地坐标系属于地心地固坐标系。d. 高程系统为了表达地球自然表面点相对地球椭球的空间位置,除采用椭球坐标(即大地经度及纬度)外,还要应用大地高H。二、大地测量常用坐标系一个完整的坐标系统是由坐标系和基准两方面要素所构成的。坐标系指的是描述空间位置的表达形式,而基准指的是为描述空间位置而定义的一系列点、线、面。在大地测量中的基准一般是指为确定点在空间中的位置,而采用的地球椭球或参考椭球的几何参数和物理参数,及其在空间的定位、定向方式,以及在描述空间位置时所采用的单位长度的定义。1、空间大地坐标系图2-4 空间大地坐标系空间大地坐标系是采用大地经度(L)、纬度(B)和大地高(H)来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角,经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角,大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。图2-5 空间直角坐系标系2、空间直角坐标系:空间直角坐标系的坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上,且按右手系与X轴呈90夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。3、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标(空间直角坐标或空间大地坐标)通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如UTM投影、Lambuda投影等,在我国采用的是高斯-克吕格投影,也称为高斯投影。4、高斯平面直角坐标系高斯投影基本概念:地图数学投影:将椭球面上元素(包括坐标、方位和距离)按一定的数学法则投影到平面上。图2-6 高斯投影高斯投影对地图投影的要求: 采用等角投影(又称正形投影)。在有限的范围内使地图上图形同椭球上原形保持相似,免除了大量投影计算工作。 在所采用的正形投影中,要求长度和面积变形不大。投影后应该保证具有一个单一起算点的统一的坐标系。高斯投影高斯投影是正形投影的一种。将一个横椭圆柱套在地球上。椭球体中心o在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与圆柱相切。此子午线称为中央子午线。然后将椭球体面上的点,线按正形投影条件投影投影到椭圆柱上,再沿椭圆柱n,s点母线割开,并展成平面,称为高斯投影平面。高斯投影平面特点a. 中央子午线是直线,其长度不变,离开中央子午线的其它子午线是弧形,凹向中央子午线。离开中央子午线越远,变形越大;b. 投影后赤道是一条直线,赤道与中央子午线保持正交;c. 离开赤道的纬线是弧线,凸向赤道。图2-7 6带和3带投影高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大。实际中采用分带投影的方法。投影带宽度是以两相邻子午线的径差l来划分。有6带和3 带等不同投影方法。6带投影是从英国格林威治子午线开始,自西向东,每隔6投影一次,编号160带(n)。各带中央子午线经度。已知某点大地经度L,可按下式计算该点所属的带号: nL/6(的整数商)1(有余数时)图2-8 高斯平面直角坐标系中国11个6带,1323带(中央子午线75 135 )北京位于6带的第20带,中央子午线的经度117度。根据高斯投影的特点,以赤道和中央子午线的交点为坐标原点o,中央子午线方向为x轴,北方向为正。赤道投影线为y轴,东方向为正。国家统一坐标:在我国x坐标都是正的,y坐标的最大值(在赤道上)约为330为了避免出现负的横坐标,可在横坐标上加上500,000m。此外还应在坐标前面冠以带号。例如,有一点Y=19 123456.789m,该点位在19带内,其相对于中央子午线而言的横坐标是:首先去掉带号,再减去500000m,最后得Y=-376543.211m。5、通用横轴墨卡托投影(UTM)通用横轴墨卡托投影(Universal Transverse Mercator Projection)取其前面三个英文单词的大写字母而称UTM投影。从几何意义上讲,UTM投影属于横轴等角割椭圆柱投影。它的投影条件是取第3个条件“中央经线投影长度比不等于1而是等于0.9996”,投影后两条割线上没有变形,它的平面直角坐标系与高斯投影相同,且和高斯投影坐标有一个简单的比例关系,因而有的文献上也称它为mo=0.9996的高斯投影。该投影由美国军事测绘局1938年提出,1945年开始采用。已被许多国家、地区或集团采用作为大地测量和地形图的投影基础。三、我国采用的常用坐标系介绍1、中华人民共和国大地原点中国的地理坐标为了在国家领土上进行大地测量,必须采用一个参考椭球体。其数学的参考椭球面必须与物理的大地水准面相近,并且把两者关系确定下来,这就是参考椭球定位。大地原点则是定位中的基准点,也是地理坐标经度、纬度的起算点。中国的大地原点坐落在距西安市36千米的咸阳市泾阳县境内。原点在地下室,标志用红色玛瑙石制成,直径10厘米,中部突起的半球上,刻有精密十字。如果谁有幸用手触摸那指甲盖大的十字,就等于按在中国大地经纬坐标的起算点和基准点中华大地的“原点”上。 2、1954年北京坐标系1954年北京坐标系是我国目前广泛采用的大地测量坐标系。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。为一参心大地坐标系。 建国前,我国没有统一的大地坐标系统,建国初期,在苏联专家的建议下,我国根据当时的具体情况,建立起了全国统一的1954年北京坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a6378245米,=1:298.3;3、1980年西安大地坐标系1978年,我国决定重新对全国天文大地网施行整体平差,并且建立新的国家大地坐标系统,整体平差在新大地坐标系统中进行,这个坐标系统就是1980年西安大地坐标系统。1980年西安大地坐标系统所采用的地球椭球参数的四个几何和物理参数采用了IAG 1975年的推荐值,它们是:a6378140米,=1:298.257椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD地极原点方向),起始子午面平行于格林尼治平均天文子午面,椭球面同似大地水准面在我国境内符合最好,高程系统以1956年黄海平均海水面为高程起算基准。4、WGS-84坐标系WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。属于地心地固坐标系。 WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。WGS-84是由分布于全球的一系列GPS跟踪站的坐标来具体体现的。 WGS-84系所采用椭球参数为: a6378137米,=1:298.257223563四、大地坐标系的转换基础由于存在各种大地坐标系统,另外,在各种坐标系统建立发展过程中,也要经历由粗到精的发展过程。因此,存在着坐标转换的问题,一下介绍大地坐标转换的基本概念和方法。对于地球和参考椭球可分别建立空间直角坐标系O1-X1Y1Z1和O-XYZ,两者间的相对关系可用三个平移参数X0,Y0,Z0(椭球中心O相对于地心O1的平移参数)和三个旋转参数x,、Y,Z,来表示。因此,对于不同大地坐标系的换算,除了包含3个平移参数、3个旋转参数和1个尺度变化参数外,还包括2个地球椭球元素变化参数。以下以坐标转换软件运行说明为例,介绍坐标转换的过程。首先,我们要弄清楚几种坐标表示方法。大致有三种坐标表示方法:经纬度和高程,空间直角坐标,平面坐标和高程。我们通常说的WGS-84坐标是经纬度和高程这一种,北京54坐标是平面坐标和高程着一种。现在,再搞清楚转换的严密性问题,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换这时不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。在本软件中提供了计算三参数、七参数的功能。在一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。本软件提供计算四参数的功能。现在举个例子说明:在珠江有一个测区,需要完成WGS-84坐标到珠江坐标系(54椭球)的坐标转换,整个转换过程是这样的: WGS-84经纬度WGS-84空间直角七参数转换北京54空间直角北京54经纬度坐标投影北京54平面坐标四参数转换珠江平面坐标三个已知点计算七参数一个已知点计算三参数投影参数设置两个已知点计算四参数本软件使用说明:本软件采用文件化管理,用户可以将一种转换作为一个文件保存下来,下次使用时从文件菜单中选择打开这个文件来调用所有已有的转换参数。实例一:转换要求:用户在一个佛山测区内使用RTK GPS接收机接受了一些点的WGS-84的坐标,现在希望将其转换为北京54和佛山坐标系下的坐标。用户有佛山测区的一些控制点,这些控制点有WGS-84坐标,也有北京-54坐标也有佛山坐标。分析:WGS-84坐标和北京54坐标是不同两个椭球的坐标转换,所以要求得三参数或七参数,而北京54和佛山坐标都是同一个椭球,所以他们之间的转换是地方坐标转换,需要求得地方转化四参数,因为要求得到的北京54是平面坐标所以需要设置投影参数。:步骤:1 1 新建坐标转换文件,便于下次使用转换是不用重新输入,直接打开即可。2 2 设置投影参数。3 3 用一个已知点(WGS84坐标和北京54坐标),计算不同椭球转换的三参数(或七参数)。4 4 确定转换参数。5 5 打开七参数转换,完成WGS84到北京54的转换。6 6 利用多个已知点(北京54坐标和佛山坐标),计算同一个椭球的地方坐标转换(四参数)。7 7 确定转换参数8 8 同时打开七参数和四参数。完成WGS-84到佛山坐标的转换。实例二:转换要求:用户在一个测区内有一些点的北京54的坐标,现在希望将其转换为国家80坐标。用户有测区的一些控制点,这些控制点既有北京-54坐标也有国家80坐标。文件转换用户如果需要转换的是一个文件里的所有的点,可以用文件转换来完成。1 1 确定转换关系:按照上面的步骤完成18步的操作,这样就确立了转换关系,也就是说文件里所有的点都按照上面确定的转换关系来完成转换。2 2 确定转换格式:在主界面中选择文件转换,点击格式按钮。新建格式:在名称,扩展名中输入相应的内容,然后自己选择数据列表中的内容并添加来确定格式,如果列表中没有的就用其他来表示,完成后点击完成新建。选择格式:在格式列表中选择格式文件转换方式:转换后的文件有三种方式,如原来的文件是C:File.txt文件,用户选择其中的一种,这样转换后就会根据这个方式来完成新建文件。却省是在文件扩展名后+1,即转换后会新生成一个C:File.txt1文件。在上述工作完成后,单击确定按钮即可。3 3 选择转换文件并完成转换单击浏览按钮,打开文件选择对话框,选择文件并确定,在左边会显示文件,用户单击 =按钮即可完成转换,右边会显示出转换后的文件名和路径,用户可以通过双击列表中的文件即可查看文件内容。实例三:转换要求:用户在番禹工作,要求完成从WGS-84到国家80的转换,由于测区范围比较大,需要进行七参数转换。注意:这个例子同样适合于直接从WGS-84坐标转换为地方坐标转换。分析: 首先分析坐标:因为七参数转换模型的特点,要求转换的坐标不能相差太大,WGS-84的坐标为:023:09:33.6274 112:55:41.2119 62.536国际80坐标为: 562589.8110 290115.8140 70.3590用WGS-84不加任何参数转化为平面坐标为:2562588.851341 390232.479605可以看到 X的大数差-2000000 Y的大数差-100000所以改变投影参数里的X,Y常数改正为X常数:0-2000000=-2000000 Y常数:500000-100000=400000一、设置投影参数二、计算七参数选择坐标转换菜单下的“计算七参数“,打开如图对话框选择好源坐标和目标坐标的类型,源坐标和目标坐标的椭球基准,输入源坐标和目标坐标,点击“增加“按钮,就会将刚才的公共点坐标输入到列表中,同样的方法至少输入三个已知点到列表中,点击“计算“按钮,就可以看到计算的结果,同时在”RMS”中会显示使用这套参数後计算後每个点的坐标中误差,如果发现误差过大,可能坐标中由输入错误的,这时可以通过在列表中选择不同的站点计算,直到满意为止。完成后点击“确定“按钮。三、七参数设置单击“确定“按钮即可设置好了七参数四、完成转换选择“七参数转换“打钩,就可以完成了,完成后点击保存,下次就可以使用同样的参数。 上述的方法同样适合于从WGS-84直接转换为地方坐标,关键是确定好投影参数的X,Y常数。五、地磁场介绍1、 成因假说2、 地磁要素3、 地磁图4、 地磁场的特征5、 日变和磁暴6、 地磁模型六、大地测量学在定向井专业中的运用1、真北、磁北、网格北及磁偏角、收敛角地图方位,系指地图固有的方向性和地图上标识方向的各要素。图2-9 真北、网格北及收敛角方位在社会实践中有着重要意义,不仅在地理考察中用于识途、测定现象分布走向、判定现象在地图上的位置或地图上的图形指代现象的实地位置,以及研究现象在不同方向上的差异;而且在经济建设和国防建设上亦少不了方位,工矿厂址选择、开渠筑路的实地勘测选线、海上与空中航行、军队行军和火炮射击等均需用地图定方位。在定向井施工作业中,现场需要测量井斜、方位等参数以确定井眼轨迹,其中,方位角有三种,即:真北方位、磁北方位和网格北方位。它们分别(一)方位角测绘或使用地形图时,首先要确定一个南北标准方向线,作为标定地图方向和测定目标方位的依据,常用的是方位角和三北方向线。方位角,系从过某点P的指北方向线起,顺时针方向量到某一目标方向线的水平夹角a(图2-55)。大比例尺地形图上绘有三种指向北方的线,即真子午线、磁子午线、坐标纵线、称为三北方向线。这三种方向线虽然都是指向北方,但这“北方”实际上是不一致的,分别称为真北、磁北和坐标北,统称为三北方向。由三北方向线构成的三种方位角为真方位角、磁方位角和坐标方位角(图2-56)。(1)真子午线与真方位角真子午线,系通过地面某点P指向地球南北两极的方向线,即经线。在地形图上,东、西内图廓线和经度相同各点的连线都是真子午线,它指向正南、正北方向。真方位角,系从过某点P的真子午线北端起,顺时针方向到某目标M方向线之间的水平夹角(A)。在地形图上欲求AB线段的真方位角,可以从A点作上述真子午线的平行线AN,用量角器以AN为起始边,顺时针量至AB方向线的夹角,即得AB线段的真方位角(图2-57)。(2)磁子午线与磁方位角磁子午线,系在某一地点上,罗盘仪磁针水平静止时所指的南北方向线。磁子午线方向可以用罗盘仪测得。在小面积测图中常用磁子午线作为定向的标准。大比例尺地形图右半幅中央的南北图廓间的PP连线即为该图的磁子午线。磁方位角,系从过某点P的磁子午线北端起,顺时针方向到某目标M方向线之间的水平夹角(Am )。在大比例尺地形图上过某点作PP线的平行线,以此线为基准,用上述求真方位角的方法,量测出磁方位角。(3)坐标纵线与坐标方位角坐标纵线,系高斯-克吕格投影带坐标纵轴(中央经线)及与其平行的方里网纵线,即坐标北方向线。除中央经线外,它们均不指向真北方向,所指的为坐标北方向。坐标方位角,系从过某点P的坐标纵线北端起,顺时针方向到某目标M方向线之间的水平夹角(a)。在地形图上过某点作与坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论