分类讨论思想方法在初中数学教学中的应用.doc_第1页
分类讨论思想方法在初中数学教学中的应用.doc_第2页
分类讨论思想方法在初中数学教学中的应用.doc_第3页
分类讨论思想方法在初中数学教学中的应用.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分类讨论思想方法在初中数学教学中的应用摘 要: 数学思想和方法是数学的灵魂,知识转化为能力的桥梁。在数学教学中,我们要有计划、有意识、有步骤地渗透一些数学思想方法,引导学生去感悟基本的数学思想。分类讨论就是一种重要的思想方法,本文尝试通过几个典型例题的解析,揭示分类讨论思想的解题策略,感受分类讨论思想在解题中的运用。 关 键 词: 分类讨论 数学思想方法 应用数学思想和方法是数学的灵魂,知识转化为能力的桥梁。数学课程标准在总体目标中提出使学生能够“获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能”。同时也明确指出:“数学思想蕴含在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括。”数学思想贯穿于整个中学数学教学中,在教学中,我们不仅要组织学生探索知识,更应该引导学生在探索的过程中积累基本的数学活动经验,感悟基本的数学思想。分类讨论思想方法就是中学众多的数学思想方法之一,它是解决数学问题的一种重要思想方法。分类讨论是依据数学对象本质属性的异同,选取适当的标准不重复不遗漏地将其分为若干类,然后逐类进行讨论来解决问题的一种数学思想方法,是数学发现的重要手段。如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,就运用了分类讨论的思想。分类讨论思想的原则是:标准统一、不重不漏。分类讨论可以使问题化繁为简,化难为易,能很好地训练一个人思维的条理性和概括性。一、分类思考,避免遗漏与重复。例1:右图中有多少个正方形?分析:如果一个一个地数难免会重复或遗漏,所以应该设法分类计数。设图中每个小方格的边长为1个单位,则图中包含边长分别为1、2、3的三类正方形,算出这三类正方形的总个即为所求。94114,这样运用分类思想方法让初看无法着手的问题变化为简单的三个小问题,让我们的思维清晰有序而不零乱,轻而易举地解决了问题。二、分类讨论,让问题化繁为简。例2:已知abc67,bd是从abc的顶点引出的一条射线,且cbd36,试求出abd的度数。分析:由于射线bd的端点b是确定的,而方向不确定,因此abd的位置可以分为在abc的内部和外部这两种情况来进行讨论。解:如图,(1)若射线bd在abc的内部,则:abdabccbd673631(2)若射线bd在abc的外部,则:abdabccbd6736103有关几何图形位置可能出现的情况,要根据相关的条件和几何图形的性质,分类出各种符合条件的图形,从而正确解决问题。例3:用一条长18的细绳围成一个等腰三角形。(1) 如果腰长是底边的2倍,那么各边的长是多少?(2) 能围成有一边的长为4cm的等腰三角形吗?为什么?解:(1)设底边长为cm,则腰长为2cm。 2218 解得3.6 所以,三边长分别为3.6cm,7.2cm,7.2cm。 (2)因为边长为4cm的边可能是腰,也可能是底边,所以需要分两种情况讨论。如果4cm长的边为底边,设腰长为cm,则:4218 解得:7如果4cm长的边为腰,设底边长为cm,则: 2418, 解得:10因为4410,两边的和小于第三边的情况,所以不能围成腰长是4cm的等腰三角形。由以上讨论可知,可以围成底边长是4 cm 的等腰三角形。yncoma(4,0)b(4,3)p三、在问题解决中感悟分类讨论思想。例4:如图,在平面直角坐标系中,四边形oabc为矩形,点a,b的坐标分别为(4 ,0 ),(4 ,3 ) ,动点m、n 分别从点o、b同时出发,以每秒1个单位的速度运动,其中点m沿oa向终点a运动,点n沿bc向终点c运动,过点n作np bc ,交ac于点p,连结mp,两动点运动了秒。(l)p点的坐标为(_ _,_ _)(用含的代数式表示)。(2)求mpa面积s的最大值,并求此时的值。(04 ) 。(3)当x为何值时,mpa为等腰三角形?简要说明理由。解:(1)4, (2)smpa (4) (2)2 (0x4) 当2时,s最大(3)m(,0),a(4,0),p(4, ), ma4,ap x ,mp mpa为等腰三角形,哪两腰相等?题目并没有指明,因此要分以下三种情形来讨论: 如果maap,4 ,解得: 如果mamp,4 ,解得:1 ,20(舍去)。 如果apmp, ,即3216160,解得:1 ,24(舍去)。综上三种情况,所以当 或 或 时,mpa是等腰三角形。在解题过程中,解到某一步时如此例(3)中,两腰相等就必须分为maap,mamp,apmp三种不同情况被研究的问题中包含了多种可能情况,我们就必须确定一个标准,根据这个标准划分成几个用不同形式去解决的小问题,将这些小问题一一加以解决,从而使原问题得到正确的解决,这就是分类讨论的思想方法。在教学中,需要我们有意识地渗透分类讨论思想,采用灵活又有效的教学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论