




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十四章 圆 单元要点分析 教学内容 1本单元数学的主要内容 (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角 (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系 (3)正多边形和圆 (4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积 2本单元在教材中的地位与作用 学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线圆的有关性质通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程 教学目标 1知识与技能 (1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理 (2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线 (3)进一步认识和理解正多边形和圆的关系和正多边的有关计算 (4)熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算 2过程与方法 (1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动了解概念,理解等量关系,掌握定理及公式 (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流 (3)在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学思想 (4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力 (5)探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义 3情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望 教学重点 1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其运用 2在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等及其运用 3在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半及其运用 4半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径及其运用 5不在同一直线上的三个点确定一个圆 6直线l和o相交dr及其运用 7圆的切线垂直于过切点的半径及其运用 8经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题 9从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角及其运用 10两圆的位置关系:d与r1和r2之间的关系:外离dr1+r2;外切d=r1+r2;相交r2-r1dr1+r2;内切d=r1-r2;内含dr;点p在圆上d=r;点p在圆内dr;点p在圆上d=r;点p在圆内dr 点p在圆上d=r 点p在圆内dr点p在圆外;如果d=r点p在圆上;如果dr 点p在圆上d=r点p在圆内dr 这个结论的出现,对于我们今后解题、判定点p是否在圆外、圆上、圆内提供了依据 下面,我们接下去研究确定圆的条件: (学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆 (1)作圆,使该圆经过已知点a,你能作出几个这样的圆? (2)作圆,使该圆经过已知点a、b,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段ab有什么关系?为什么? (3)作圆,使该圆经过已知点a、b、c三点(其中a、b、c三点不在同一直线上),你是如何做的?你能作出几个这样的圆? 老师在黑板上演示:(1)无数多个圆,如图1所示 (2)连结a、b,作ab的垂直平分线,则垂直平分线上的点到a、b的距离都相等,都满足条件,作出无数个其圆心分布在ab的中垂线上,与线段ab互相垂直,如图2所示 (1) (2) (3) (3)作法:连接ab、bc; 分别作线段ab、bc的中垂线de和fg,de与fg相交于点o;以o为圆心,以oa为半径作圆,o就是所要求作的圆,如图3所示在上面的作图过程中,因为直线de与fg只有一个交点o,并且点o到a、b、c三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过a、b、c三点可以作一个圆,并且只能作一个圆 即:不在同一直线上的三个点确定一个圆 也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆 外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心 下面我们来证明:经过同一条直线上的三个点不能作出一个圆 证明:如图,假设过同一直线l上的a、b、c三点可以作一个圆,设这个圆的圆心为p,那么点p既在线段ab的垂直平分线l1,又在线段bc的垂直平分线l2,即点p为l1与l2点,而l1l,l2l,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾所以,过同一直线上的三点不能作圆 上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立这种证明方法叫做反证法 在某些情景下,反证法是很有效的证明方法 例1某地出土一明代残破圆形瓷盘,如图所示为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心 分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心 作法:(1)在残缺的圆盘上任取三点连结成两条线段; (2)作两线段的中垂线,相交于一点 则o就为所求的圆心 三、巩固练习 教材p100 练习1、2、3、4 五、归纳总结(学生总结,老师点评) 本节课应掌握:1 点和圆的位置关系:设o的半径为r,点p到圆心的距离为d,则 2不在同一直线上的三个点确定一个圆 3三角形外接圆和三角形外心的概念 4反证法的证明思想24.2 与圆有关的位置关系(第2课时)教学内容 1直线和圆相交、割线;直线和圆相切、圆的切线、切点;直线和圆没有公共点、直线和圆相离等概念 2设o的半径为r,直线l到圆心o的距离为d 直线l和o相交dr 3切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 4切线的性质定理:圆的切线垂直于过切点的半径 5应用以上的内容解答题目 教学目标 (1)了解直线和圆的位置关系的有关概念(2)理解设o的半径为r,直线l到圆心o的距离为d,则有:直线l和o相交dr (3)理解切线的判定定理:理解切线的性质定理并熟练掌握以上内容解决一些实际问题 复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r直线和圆相切,讲授切线的判定定理和性质定理 重难点、关键 1重点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目 2难点与关键:由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价 教学过程 一、复习引入(老师口答,学生口答,老师并在黑板上板书)同学们,我们前一节课已经学到点和圆的位置关系设o的半径为r,点p到圆心的距离op=d, 则有:点p在圆外dr,如图(a)所示; 点p在圆上d=r,如图(b)所示; 点p在圆内dr,如图(c)所示 二、探索新知 前面我们讲了点和圆有这样的位置关系,如果这个点p改为直线l呢?它是否和圆还有这三种的关系呢? (学生活动)固定一个圆,把三角尺的边缘运动,如果把这个边缘看成一条直线,那么这条直线和圆有几种位置关系? (老师口答,学生口答)直线和圆有三种位置关系:相交、相切和相离(老师板书)如图所示: 如图(a),直线l和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线 如图(b),直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点 如图(c),直线和圆没有公共点,这时我们说这条直线和圆相离 我们知道,点到直线l的距离是这点向直线作垂线,这点到垂足d的距离,按照这个定义,作出圆心o到l的距离的三种情况? (学生分组活动):设o的半径为r,圆心到直线l的距离为d,请模仿点和圆的位置关系,总结出什么结论?老师点评直线l和o相交dr,如图(c)所示 因为d=r直线l和o相切,这里的d是圆心o到直线l的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径oa的a点,因此,很明显的,我们可以得到切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线 (学生分组讨论):根据上面的判定定理,如果你要证明一条直线是o的切线,你应该如何证明? (老师点评):应分为两步:(1)说明这个点是圆上的点,(2)过这点的半径垂直于直线 例1如图,已知rtabc的斜边ab=8cm,ac=4cm (1)以点c为圆心作圆,当半径为多长时,直线ab与c相切?为什么?(2)以点c为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线ab分别有怎样的位置关系? 分析:(1)根据切线的判定定理可知,要使直线ab与c相切,那么这条半径应垂直于直线ab,并且c点到垂足的长就是半径,所以只要求出如图所示的cd即可 (2)用d和r的关系进行判定,或借助图形进行判定 解:(1)如图24-54:过c作cdab,垂足为d 在rtabc中 bc= cd=2 因此,当半径为2cm时,ab与c相切 理由是:直线ab为c的半径cd的外端并且cdab,所以ab是c的切线 (2)由(1)可知,圆心c到直线ab的距离d=2cm,所以 当r=2时,dr,c与直线ab相离; 当r=4时,dr,c与直线ab相交 刚才的判定定理也好,或者例1也好,都是不知道直线是切线,而判定切线,反之,如果知道这条直线是切线呢?有什么性质定理呢?实际上,如图,cd是切线,a是切点,连结ao与o于b,那么ab是对称轴,所以沿ab对折图形时,ac与ad重合,因此,bac=bad=90 因此,我们有切线的性质定理: 圆的切线垂直于过切点的半径 三、巩固练习 教材p102 练习,p103 练习 四、应用拓展 例2如图,ab为o的直径,c是o上一点,d在ab的延长线上,且dcb=a (1)cd与o相切吗?如果相切,请你加以证明,如果不相切,请说明理由(2)若cd与o相切,且d=30,bd=10,求o的半径 分析:(1)要说明cd是否是o的切线,只要说明oc是否垂直于cd,垂足为c,因为c点已在圆上 由已知易得:a=30,又由dcb=a=30得:bc=bd=10 解:(1)cd与o相切 理由:c点在o上(已知) ab是直径 acb=90,即aco+ocb=90 a=oca且dcb=a oca=dcb ocd=90 综上:cd是o的切线 (2)在rtocd中,d=30 cod=60 a=30 bcd=30 bc=bd=10 ab=20,r=10 答:(1)cd是o的切线,(2)o的半径是10 五、归纳小结(学生归纳,总结发言老师点评) 本节课应掌握: 1直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆相离等概念 2设o的半径为r,直线l到圆心o的距离为d则有: 直线l和o相交dr 3切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 4切线的性质定理,圆的切线垂直于过切点的半径 5应用上面的知识解决实际问题 六、布置作业 1教材p110 复习巩固4、524.2 与圆有关的位置关系(第3课时) 教学内容 1切线长的概念 2切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 3三角形的内切圆及三角形内心的概念 教学目标 了解切线长的概念 理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用 复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题 重难点、关键 1重点:切线长定理及其运用 2难点与关键:切线长定理的导出及其证明和运用切线长定理解决一些实际问题 教学过程 一、复习引入 1已知abc,作三个内角平分线,说说它具有什么性质? 2点和圆有几种位置关系?你能说说在这一节中应掌握几个方面的知识? 3直线和圆有什么位置关系?切线的判定定理和性质定理,它们如何? 老师点评:(1)在黑板上作出abc的三条角平分线,并口述其性质:三条角平分线相交于一点;交点到三条边的距离相等 (2)(口述)点和圆的位置关系有三种,点在圆内dr;不在同一直线上的三个点确定一个圆;反证法的思想 (3)(口述)直线和圆的位置关系同样有三种:直线l和o相交dr;切线的判定定理:经过半径的外端并且垂直于半径的直线是圆的切线;切线的性质定理:圆的切线垂直于过切点的半径 二、探索新知 从上面的复习,我们可以知道,过o上任一点a都可以作一条切线,并且只有一条,根据下面提出的问题操作思考并解决这个问题 问题:在你手中的纸上画出o,并画出过a点的唯一切线pa,连结po,沿着直线po将纸对折,设圆上与点a重合的点为b,这时,ob是o的一条半径吗?pb是o的切线吗?利用图形的轴对称性,说明圆中的pa与pb,apo与bpo有什么关系? 学生分组讨论,老师抽取34位同学回答这个问题 老师点评:ob与oa重叠,oa是半径,ob也就是半径了又因为ob是半径,pb为ob的外端,又根据折叠后的角不变,所以pb是o的又一条切线,根据轴对称性质,我们很容易得到pa=pb,apo=bpo 我们把pa或pb的长,即经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长 从上面的操作几何我们可以得到: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 下面,我们给予逻辑证明 例1如图,已知pa、pb是o的两条切线求证:pa=pb,opa=opb 证明:pa、pb是o的两条切线 oaap,obbp 又oa=ob,op=op, rtaoprtbop pa=pb,opa=opb 因此,我们得到切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 我们刚才已经复习,三角形的三条角平分线于一点,并且这个点到三条边的距离相等(同刚才画的图)设交点为i,那么i到ab、ac、bc的距离相等,如图所示,因此以点i为圆心,点i到bc的距离id为半径作圆,则i与abc的三条边都相切 与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 例2如图,已知o是abc的内切圆,切点为d、e、f,如果ae=1,cd=2,bf=3,且abc的面积为6求内切圆的半径r 分析:直接求内切圆的半径有困难,由于面积是已知的,因此要转化为面积法来求就需添加辅助线,如果连结ao、bo、co,就可把三角形abc分为三块,那么就可解决 解:连结ao、bo、co o是abc的内切圆且d、e、f是切点 af=ae=1,bd=bf=3,ce=cd=2 ab=4,bc=5,ac=3 又sabc=6 (4+5+3)r=6 r=1 答:所求的内切圆的半径为1 三、巩固练习 教材p106 练习 四、应用拓展 例3如图,o的直径ab=12cm,am、bn是两条切线,dc切o于e,交am于d,交bn于c,设ad=x,bc=y (1)求y与x的函数关系式,并说明是什么函数? (2)若x、y是方程2t2-30t+m=0的两根,求x,y的值(3)求cod的面积分析:(1)要求y与x的函数关系,就是求bc与ad的关系,根据切线长定理:de=ad=x,ce=cb=y,即dc=x+y,又因为ab=12,所以只要作dfbc垂足为f,根据勾股定理,便可求得(2)x,y是2t2-30t+m=0的两根,那么x1+x2=,x1x2=,便可求得x、y的值 (3)连结oe,便可求得 解:(1)过点d作dfbc,垂足为f,则四边形abfd为矩形 o切am、bn、cd于a、b、e de=ad,ce=cb ad=x,cb=y cf=y-x,cd=x+y 在rtdcf中,dc2=df2+cf2 即(x+y)2=(x-y)2+122 xy=36 y=为反比例函数; (2)由x、y是方程2t-30t+m=0的两根,可得: x+y=15 同理可得:xy=36 x=3,y=12或x=12,y=3 (3)连结oe,则oecd scod=cdoe=(ad+bc)ab =1512 =45cm2 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1圆的切线长概念; 2切线长定理; 3三角形的内切圆及内心的概念 六、布置作业 1教材p117 综合运用5、6、7、824.2 与圆有关的位置关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 户外摄影教学活动策划方案
- 园林雾森系统施工方案
- 天津一汽营销方案策划
- 投标申请书仪器信息网
- 大坝防护工程施工方案
- 宁夏财务咨询方案
- 2025年教师资格证考试教育教学知识与能力专项训练试卷
- 特定行业合同模板的使用指南
- 2025工会基础知识考试题库(+答案解析)
- 2026湖北专升本城乡规划专业备考指南
- 《一次性使用无菌医疗器械监督管理办法》
- O型圈推荐沟槽设计
- GB/T 3810.14-2016陶瓷砖试验方法第14部分:耐污染性的测定
- GB/T 26567-2011水泥原料易磨性试验方法(邦德法)
- 企业知识产权管理中的专利挖掘工作概述课件
- 癫痫的急救与护理课件
- 国家地表水环境质量监测网采测分离实施方案课件
- 【高等数学练习题】兰州交通大学专升本自考真题汇总(附答案解析)
- 加速康复在肝胆胰外科的应用课件
- 【完整版】锁骨骨折护理查房课件
- GB∕T 35320-2017 危险与可操作性分析(HAZOP分析)应用指南
评论
0/150
提交评论