




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三、模块验收评估(教师用书独具)考前热身自评,学习效果心知肚明一、选择题(本大题共10小题,每小题5分,共50分)1一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()解析:选C由几何体的正视图、侧视图,结合题意,可知选C.2如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是()A6B12C18 D24解析:选B正视图和侧视图都是等腰梯形,俯视图是一个圆环,该几可体是一个圆台,且圆台的上、下底半径分别为1和2,母线为4,S侧(rr)l(12)412.3一个球的内接正方体的表面积为54,则球的表面积为()A27 B18C9 D54解析:选A设正方体的棱长为a,球的半径为r,则6a254,a3.又2ra,ra,S表4r2427.4 已知高为3的直棱柱ABCABC的底面是边长为1的正三角形(如图所示),则三棱锥BABC的体积为()A. B.C. D.解析:选DVBABCSABCh3.5 已知直线l1经过两点(1,2),(1,4),直线l2经过两点(2,1),(x,6),且l1l2,则x()A2 B2C4 D1解析:选A因为直线l1经过两点(1,2),(1,4),所以直线l1的倾斜角为.而l1l2,所以,直线l2的倾斜角也为,又直线l2经过两点(2,1),(x,6),所以,x2.6一个底面是正三角形的三棱柱的正视图如图所示,则其体积等于()A6 B2C. D2解析:选C由正视图可知该三棱柱的底面边长为2,棱柱的高为1,故其体积V21.7 直线xky0,2x3y80和xy10交于一点,则k的值是()A. BC2 D2解析:选B解方程组得则点(1,2)在直线xky0上,得k.8圆:x2y24x6y0和圆:x2y26x0交于A,B两点,则AB的垂直平分线的方程是()Axy30 B2xy50C3xy90 D4x3y70解析:选CAB的垂直平分线即是两圆连心线所在的直线,两圆的圆心为(2,3),(3,0),则所求直线的方程为,即3xy90.9在四面体ABCD中,棱AB,AC,AD两两互相垂直,则顶点A在底面BCD上的投影H为BCD的()A垂心 B重心C外心 D内心解析:选AABAC,ABAD,ACADA,AB平面ACD,ABCD.AH平面BCD,AHCD,ABAHA,CD平面ABH,CDBH.同理可证CHBD,DHBC,则H是BCD的垂心10 设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是()AV1比V2大约多一半BV1比V2大约多两倍半CV1比V2大约多一倍DV1比V2大约多一倍半解析:选D设正方体的棱长为a,则正方体的体积为V2a3,则球半径为a,球体积V1a3,则V1V2a3a3(1)a31.72a3.二、填空题11 已知某几何体的三视图如图所示,则该几何体的体积为_解析:由三视图可知,该几何体是由三个圆柱构成的组合体,其中两边圆柱的底面直径是4,高为1,中间圆柱的底面直径为2,高为4,所以该组合体的体积为222112412.答案:1212已知平面,和直线m,给出条件:m;m;m;.(1)当满足条件_时,有m;(2)当满足条件_时,有m(填所选条件的序号)解析:由面面平行和线面平行的定义知若m,则m;由线面垂直的定义知若m,则m.答案:(1)(2)13 如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC平面ABC,在折起后形成的三棱锥DABC中,给出下列三种说法:DBC是等边三角形;ACBD;三棱锥DABC的体积是.其中正确的序号是_(写出所有正确说法的序号)解析:取AC的中点E,连接DE,BE,则DEAC,BEAC,且DEBE.又DEECBE,所以DCDBBC,故DBC是等边三角形又AC平面BDE,故ACBD.又VDABCSABCDE11,故错误答案:14已知直线l经过点P(4,3),且被圆(x1)2(y2)225截得的弦长为8,则直线l的方程是_解析:(41)2(32)21025,点P在圆内当l的斜率不存在时,l的方程为x4,将x4代入圆的方程,得y2或y6,此时弦长为8.当l的斜率存在时,设l的方程为y3k(x4),即kxy4k30,当弦长为8时,圆心到直线的距离为3,则3,解得k.则直线l的方程为y3(x4),即4x3y250.答案:4x3y250或x4三、解答题15已知两条直线l1:3x4y20与l2:2xy20的交点P,求:(1)过点P且过原点的直线方程;(2)过点P且垂直于直线l3:x2y10的直线l的方程解:由解得点P的坐标是(2,2),(1)所求直线方程为yx.(2)所求直线l与l3垂直,设直线l的方程为2xyC0.把点P的坐标代入得2(2)2C0,得C2.所求直线l的方程为2xy20.16某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点(1)根据三视图,画出该几何体的直观图;(2)在直观图中,证明:PD平面AGC.证明:平面PBD平面AGC.解:(1)该几何体的直观图如图所示(2)证明:如图,连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OGPD.又OG平面AGC,PD平面AGC,所以PD平面AGC.连接PO,由三视图,PO平面ABCD,所以AOPO.又AOBO,BOPOO,所以AO平面PBD.因为AO平面AGC,所以平面PBD平面AGC.17已知圆C:x2y28y120,直线l经过点D(2,0),且斜率为k.(1)求以线段CD为直径的圆E的方程;(2)若直线l与圆C相离,求k的取值范围解:(1)将圆C的方程x2y28y120配方得标准方程为x2(y4)24,则此圆的圆心为C(0,4),半径为2.所以CD的中点E(1,2),|CD|2,r,故所求圆E的方程为(x1)2(y2)25.(2)直线l的方程为y0k(x2),即kxy2k0.若直线l与圆C相离,则有圆心C到直线l的距离2,解得k.18(2012山东高考)在如图所示的几何体中,四边形ABCD是等腰梯形,ABCD,DAB60,FC平面ABCD,AEBD,CBCDCF.(1)求证:BD平面AED;(2)求二面角FBDC的余弦值解:(1)证明:因为四边形ABCD是等腰梯形,ABCD,DAB60,所以ADCBCD120.又CBCD,所以CDB30,因此ADB90,即ADBD.又AEBD,且AEADA,AE,AD平面AED,所以BD平面AED.(2)如图,取BD的中点G,连接CG,FG,由于CBCD,因此CGBD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘西工业自动控制装置项目投资分析报告
- 中国翻转式车库门行业市场前景预测及投资价值评估分析报告
- 2025年中国碳纤维电热纸项目创业计划书
- 中国木片篮子行业市场前景预测及投资价值评估分析报告
- 体育馆可行性研究报告范文
- 公交停车场项目可行性研究报告
- 威海职业学院态势感知系统建设项目可行性报告威海职业学院
- 煤气综合利用发电项目可行性研究报告范文
- 咖啡连锁品牌2025年市场布局创新与扩张策略研究报告
- 2025年工业互联网平台生物识别技术在智能工厂生产设备维护中的应用报告
- 工程师施工现场安全管理实务试题及答案
- 初中地理澳大利亚(第2课时)课件+-2024-2025学年地理人教版(2024)七年级下册
- 生物质转化技术原理考核试卷
- 调味品中微生物安全-全面剖析
- 审计报告模板
- 2025年全国燃气安全生产管理主要负责人考试笔试试题(500题)附答案
- TCECS24-2020钢结构防火涂料应用技术规程
- 店长入股协议书范本
- 夏季高温季节施工应急预案
- 餐饮厨房燃气设备安全操作与维护
- 高中生的规则意识教育
评论
0/150
提交评论