


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题3.1.2两角和与差的正弦、余弦、正切公式(二) 教学目标知识与技能理解以两角差的余弦公式为基础过程与方法推导两角和、差正弦和正切公式的方法情感态度价值观体会三角恒等变换特点的过程,理解推导过程,掌握其应用重点两角和、差正弦和正切公式的推导过程及运用难点两角和与差正弦、余弦和正切公式的灵活运用教学设计教学内容教学环节与活动设计探究点一两角和与差的正切公式的推导问题1你能根据同角三角函数基本关系式tan ,从两角和与差的正弦、余弦公式出发,推导出用任意角,的正切值表示tan(),tan()的公式吗?试一试探究点二两角和与差的正切公式的变形公式两角和与差的正切公式变形形式较多,例如:tan tan tan()(1tan tan ),tan tan 11.这些变式在解决某些问题时是十分方便的请利用两角和与差的正切公式或变形公式完成以下练习练习1:直接写出下列式子的结果:教学内容教学环节与活动设计1 练习2:求值:tan 20tan 40tan 20tan 40.【典型例题】例1求下列各式的值:(1);(2)tan 15tan 30tan 15tan 30.跟踪训练1求下列各式的值:(1);(2)tan 36tan 84tan 36tan 84.教学设计教学内容教学环节与活动设计例2 若,均为钝角,且(1tan )(1tan )2,求.跟踪训练2已知tan ,tan 是方程x23x40的两根,且,求角.例3已知ABC中,tan Btan Ctan Btan C,且tan Atan Btan Atan B1,试判断ABC的形状跟踪训练3已知A、B、C为锐角三角形ABC的内角求证:tan Atan Btan Ctan Atan Btan C.教学小结1公式T()的适用范围2公式T()的逆用一方面要熟记公式的结构,另一方面要注意常值代换3公式T()的变形应用只要见到tan tan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人购房合同解除及终止条件
- 海运货物保险代理服务合同范本
- 专业遴选测试题及答案
- 边城课件课教学设计
- 幼儿园管理家园合作课件
- 消防安全服务培训班通知课件
- 2025至2030中国海藻酸锂行业项目调研及市场前景预测评估报告
- 2025年智能可穿戴设备无人机飞行安全监测技术创新解析
- 2025至2030中国工业真空阀行业项目调研及市场前景预测评估报告
- 2025至2030中国毛绒布料玩具行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国电动汽车用电动机行业项目调研及市场前景预测评估报告
- 2025年福州房地产市场分析报告
- 诗词格律培训课件
- 《大学生心理健康教育》课程教案
- 音乐感知:从听觉到绘画
- 急诊icu管理制度
- 无人机操控技术 教案 3.2无人机模拟器基本设置
- T/CSBME 078-2024掌上超声仪临床应用规范
- T/CEMIA 012-2018光纤激光器用掺镱光纤
- T/BECA 0005-2023建筑垃圾再生回填材料
- 老年医学人才培训汇报
评论
0/150
提交评论