




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
到乌蒙山区的昭通;从甘肃中部的定西,到内蒙古边陲的阿尔山,看真贫、知真贫,真扶贫、扶真贫,成为“花的精力最多”的事;“扶贫先扶志”“扶贫必扶智”“实施精准扶贫”2016年天津市河西区中考数学模拟试卷(一)一、选择题(共12小题,每小题2分,满分24分)1两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A众数B中位数C方差D以上都不对2下列命题中,真命题的个数有()对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形是平行四边形A3个B2个C1个D0个3在市委、市府的领导下,全市人民齐心协力,将我市成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面相对的字应是()A文B明C城D市4如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()Ay=x+2By=x2+2Cy=Dy=5在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与ABC全等的是()AACFBACECABDDCEF6如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A6B7C8D97某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()Ay=0.12x,x0By=600.12x,x0Cy=0.12x,0x500Dy=600.12x,0x5008已知2是关于x的方程x22mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或109小亮从家步行到公交车站台,等公交车去学校图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系则小亮步行的速度和乘公交车的速度分别是()A100m/min,266m/minB62.5m/min,500m/minC62.5m/min,437.5m/minD100m/min,500m/min10如图,AB是O的直径,C,D 是O上的点,CDB=30,过点C作O的切线交AB的延长线于E,则sinE的值为()ABCD11如图,抛物线y=ax2+bx+c(a0)过点(1,0)和点(0,3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A3P1B6P0C3P0D6P312如图,已知正ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()ABCD二、填空题(共11小题,每小题2分,满分22分)13不等式组的所有整数解的积为14已知x=,则=15如图,ABC三边的中线AD、BE、CF的公共点为G,若SABC=12,则图中阴影部分的面积是16如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,ABC=60,则四边形EFGH的面积为cm217如图,ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE若BE=9,BC=12,则cosC=18如图,正方形ABCD是一块绿化带,其中阴影部分EFGH是正方形花圃一只小鸟随机落在绿化带区域内,则它停留在花圃上的概率是19如图,已知ABC,过点A作BC边的垂线MN,交BC于点D,若BC=5,AD=4,tanBAD=,则DC=20如图,半径为r的O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为21如图,四边形ABCD中,A=90,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为22如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE沿AE对折至AFE,延长交BC于点G,连接AG则sinBAG=23如图P1OA1,P2A1A2,P3A2A3,P2015A2014A2015是等腰直角三角形,点P1,P2,P3,都在函数(x0)x的图象上,斜边OA1,A1A2,A2A3,A2014A2015都在x轴上,则A2015的坐标为三、解答题(共10小题,满分74分)24如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点(1)求点A的坐标及一次函数解析式(2)求点C的坐标及反比例函数的解析式25如图,反比例函数y=(k0,x0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作ABx轴于点B,交反比例函数图象于点D,且AB=3BD(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标26 “阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选23名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计绘制成频数分布直方图,如图所示(1)图中a值为(2)将跳绳次数在160190的选手依次记为A1、A2、An,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率27为了贯彻落实市委市府提出的“精准扶贫”精神某校特制定了一系列关于帮扶A、B两贫困村的计划现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用28数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为已知tan=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度29如图,PB为O的切线,B为切点,过B作OP的垂线BA,垂足为C,交O于点A,连接PA、AO,并延长AO交O于点E,与PB的延长线交于点D(1)求证:PA是O的切线;(2)若=,且OC=4,求PA的长和tanD的值30如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把DCE沿DE折叠,点C的对应点为C(1)若点C刚好落在对角线BD上时,BC=; (2)若点C刚好落在线段AB的垂直平分线上时,求CE的长;(3)若点C刚好落在线段AD的垂直平分线上时,求CE的长31如图,二次函数y=的图象交x轴于A,B两点,交y轴于点C,顶点为D(1)求 A,B,C三点的坐标;(2)把ABC绕AB的中点M旋转180,得到四边形AEBC,求出四边形AEBC的面积;(3)试探索:在直线BC上是否存在一点P,使得PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由?32如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=x2+bx+c(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由33(10分)已知O为坐标原点,抛物线y1=ax2+bx+c(a0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x20,|x1|+|x2|=4,点A,C在直线y2=3x+t上(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n25n的最小值2016年天津市河西区中考数学模拟试卷(一)参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A众数B中位数C方差D以上都不对【考点】统计量的选择【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差故选:C【点评】本题考查方差的意义以及对其他统计量的意义的理解它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立2下列命题中,真命题的个数有()对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形是平行四边形A3个B2个C1个D0个【考点】命题与定理;平行四边形的判定【分析】分别利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形,进而得出即可【解答】解:对角线互相平分的四边形是平行四边形,正确,符合题意;两组对角分别相等的四边形是平行四边形,正确,符合题意;一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等故选:B【点评】此题主要考查了命题与定理,正确把握相关定理是解题关键3在市委、市府的领导下,全市人民齐心协力,将我市成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面相对的字应是()A文B明C城D市【考点】专题:正方体相对两个面上的文字【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【解答】解:由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”故选:B【点评】本题主要考查的是正方体相对两个面上的文字,掌握正方体相对面的特点是解题的关键4如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()Ay=x+2By=x2+2Cy=Dy=【考点】函数自变量的取值范围;在数轴上表示不等式的解集【分析】分别求出个解析式的取值范围,对应数轴,即可解答【解答】解:A、y=x+2,x为任意实数,故错误;B、y=x2+2,x为任意实数,故错误;C、,x+20,即x2,故正确;D、y=,x+20,即x2,故错误;故选:C【点评】本题考查了函数自变量的取值范围,解决本题的关键是函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负5在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与ABC全等的是()AACFBACECABDDCEF【考点】全等三角形的判定;勾股定理【专题】网格型【分析】根据全等三角形的对应边相等得到相关线段间的等量关系然后利用勾股定理进行验证【解答】解:在ABC中,AB=,BC=,AC=2A、在ACF中,AF=,2,则ACF与ABC不全等,故本选项错误;B、在ACE中,AE=3,3,32,则ACE与ABC不全等,故本选项错误;C、在ABD中,AB=AB,AD=BC,BD=AC=2,则由SSS推知ACF与ABC全等,故本选项正确;D、在CEF中,CF=3,3,32,则CEF与ABC不全等,故本选项错误;故选:C【点评】本题考查了勾股定理和全等三角形的判定此题利用了全等三角形的判定定理SSS进行证明的6如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A6B7C8D9【考点】扇形面积的计算【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=,计算即可【解答】解:正方形的边长为3,弧BD的弧长=6,S扇形DAB=63=9故选D【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB=7某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()Ay=0.12x,x0By=600.12x,x0Cy=0.12x,0x500Dy=600.12x,0x500【考点】根据实际问题列一次函数关系式【分析】根据题意列出一次函数解析式,即可求得答案【解答】解:因为油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,可得: L/km,600.12=500(km),所以y与x之间的函数解析式和自变量取值范围是:y=600.12x,(0x500),故选D【点评】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题8已知2是关于x的方程x22mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或10【考点】解一元二次方程因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质【专题】压轴题【分析】先将x=2代入x22mx+3m=0,求出m=4,则方程即为x28x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:当6是腰时,2是等边;当6是底边时,2是腰进行讨论注意两种情况都要用三角形三边关系定理进行检验【解答】解:2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,x2=6当6是腰时,2是底边,此时周长=6+6+2=14;当6是底边时,2是腰,2+26,不能构成三角形所以它的周长是14故选B【点评】此题主要考查了一元二次方程的解,解一元二次方程因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验9小亮从家步行到公交车站台,等公交车去学校图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系则小亮步行的速度和乘公交车的速度分别是()A100m/min,266m/minB62.5m/min,500m/minC62.5m/min,437.5m/minD100m/min,500m/min【考点】函数的图象【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度【解答】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(3016)min走了(81)km,故公交车的速度为700014=500m/min故选:D【点评】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一10如图,AB是O的直径,C,D 是O上的点,CDB=30,过点C作O的切线交AB的延长线于E,则sinE的值为()ABCD【考点】切线的性质【分析】连接OC,求出OCE=90,求出A=ACO=30,根据三角形外角性质求出COE=60,即可求出答案【解答】解:连接OC,EC切O于C,OCE=90,CDB=30,A=CDB=30,OA=OC,ACO=A=30,COE=30+30=60,E=1809060=30,sinE=,故选A【点评】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,连接OC构造直角三角形是做题的关键11如图,抛物线y=ax2+bx+c(a0)过点(1,0)和点(0,3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A3P1B6P0C3P0D6P3【考点】二次函数图象与系数的关系【专题】压轴题【分析】利用二次函数图象的开口方向和对称轴求出a0,b0,把x=1代入求出b=a3,把x=1代入得出P=a+b+c=2a6,求出2a6的范围即可【解答】解:抛物线y=ax2+bx+c(c0)过点(1,0)和点(0,3),0=ab+c,3=c,b=a3,当x=1时,y=ax2+bx+c=a+b+c,P=a+b+c=a+a33=2a6,顶点在第四象限,a0,b=a30,a3,0a3,62a60,即6P0故选:B【点评】此题主要考查了二次函数图象的性质,根据图象过(1,0)和点(0,3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键12如图,已知正ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()ABCD【考点】动点问题的函数图象【专题】压轴题【分析】根据题意,易得AEG、BEF、CFG三个三角形全等,且在AEG中,AE=x,AG=2x;可得AEG的面积y与x的关系;进而可判断出y关于x的函数的图象的大致形状【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2x;故AEG、BEF、CFG三个三角形全等在AEG中,AE=x,AG=2x则SAEG=AEAGsinA=x(2x);故y=SABC3SAEG=3x(2x)=(3x26x+4)故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D【点评】本题考查动点问题的函数图象问题,用图象解决问题时,要理清图象的含义即会识图二、填空题(共11小题,每小题2分,满分22分)13不等式组的所有整数解的积为0【考点】一元一次不等式组的整数解【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解【解答】解:,解不等式得:x,解不等式得:x50,不等式组的整数解为1,0,150,所以所有整数解的积为0,故答案为:0【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了14已知x=,则=【考点】分式的混合运算【分析】将被除式分母因式分解,计算括号内分式的加法,再将除法转化为乘法,计算乘法可化简原式,将x的值代入计算可得【解答】解:原式=,当x=1时,原式=故答案为:【点评】本题主要考查分式的化简求值,熟练掌握分式的基本性质和分式运算的法则是关键15如图,ABC三边的中线AD、BE、CF的公共点为G,若SABC=12,则图中阴影部分的面积是4【考点】三角形的面积【专题】压轴题【分析】根据三角形的中线把三角形的面积分成相等的两部分,知ABC的面积即为阴影部分的面积的3倍【解答】解:ABC的三条中线AD、BE,CF交于点G,SCGE=SAGE=SACF,SBGF=SBGD=SBCF,SACF=SBCF=SABC=12=6,SCGE=SACF=6=2,SBGF=SBCF=6=2,S阴影=SCGE+SBGF=4故答案为4【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,BGF的面积=BGD的面积=CGD的面积,AGF的面积=AGE的面积=CGE的面积16如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,ABC=60,则四边形EFGH的面积为9cm2【考点】中点四边形;菱形的性质【分析】连接AC、BD,首先判定四边形EFGH的形状为矩形,然后根据菱形的性质求出AC与BD的值,进而求出矩形的长和宽,然后根据矩形的面积公式计算其面积即可【解答】解:连接AC,BD,相交于点O,如图所示,E、F、G、H分别是菱形四边上的中点,EH=BD=FG,EHBDFG,EF=AC=HG,四边形EHGF是平行四边形,菱形ABCD中,ACBD,EFEH,四边形EFGH是矩形,四边形ABCD是菱形,ABC=60,ABO=30,ACBD,AOB=90,AO=AB=3,AC=6,在RtAOB中,由勾股定理得:OB=3,BD=6,EH=BD,EF=AC,EH=3,EF=3,矩形EFGH的面积=EFFG=9cm2故答案为:9【点评】本题考查了中点四边形和菱形的性质,解题的关键是判定四边形EFGH的形状为矩形17如图,ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE若BE=9,BC=12,则cosC=【考点】线段垂直平分线的性质;解直角三角形【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC【解答】解:DE是BC的垂直平分线,CE=BE,CD=BD,BE=9,BC=12,CD=6,CE=9,cosC=,故答案为【点评】本题考查了线段垂直平分线的性质以及等腰三角形的性质此题难度不大,注意掌握数形结合思想的应用18如图,正方形ABCD是一块绿化带,其中阴影部分EFGH是正方形花圃一只小鸟随机落在绿化带区域内,则它停留在花圃上的概率是【考点】几何概率【分析】求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率【解答】解:设正方形的ABCD的边长为a,则AE=EF=FC=,阴影部分的面积为(a)2=a2,小鸟在花圃上的概率为=,故答案为:【点评】本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积19如图,已知ABC,过点A作BC边的垂线MN,交BC于点D,若BC=5,AD=4,tanBAD=,则DC=2【考点】解直角三角形【专题】计算题;解直角三角形及其应用【分析】由题意得到AD与BC垂直,利用垂直的定义得到ADB=ADC=90,在直角三角形ABD中,利用锐角三角函数定义求出BD的长,由BCBD求出CD的长即可【解答】解:由题意得:ADBC,即ADB=ADC=90,在RtABD中,AD=4,tanBAD=,tanBAD=,即BD=3,则CD=BCBD=53=2,故答案为:2【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键20如图,半径为r的O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t1t2t3【考点】轨迹【专题】压轴题【分析】根据面积,可得相应的周长,根据有理数的大小比较,可得答案【解答】解:设面积相等的等边三角形、正方形和圆的面积为S,等边三角形、正方形的边长分别为a,b,圆的半径为r,等边三角形的面积S=a2,周长=3a=3,正方形的面积S=b2,周长=4b=4,圆的面积S=r2,周长=2r=2,周长平方后的结果分别为12S,16S,4St1t2t3故答案为:t1t2t3【点评】本题考查了轨迹,利用相等的面积求出相应的周长是解题关键21如图,四边形ABCD中,A=90,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3【考点】三角形中位线定理;勾股定理【专题】压轴题;动点型【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3【解答】解:ED=EM,MF=FN,EF=DN,DN最大时,EF最大,N与B重合时DN最大,此时DN=DB=6,EF的最大值为3故答案为3【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键22如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE沿AE对折至AFE,延长交BC于点G,连接AG则sinBAG=【考点】翻折变换(折叠问题)【分析】证明直角ABG直角AFG,设BG=FG=x,在直角GCE中利用勾股定理即可列方程求得BG的长,然后在直角ABG中利用勾股定理求得AG的长,则根据正弦函数的定义求解【解答】解:AFE=D=90,则AFG=90在直角ABG和直角AFG中,直角ABG直角AFG,BG=FG设BG=FG=x,在直角GCE中,EC=3,GC=6x,GE=GF+EF=x+3则(6x)2+32=(x+3)2,解得:x=2则在直角ABG中,AG=2则sinBGA=故答案是:【点评】本题考查了图形的折叠、三角函数的定义以及全等三角形的判定与性质,正确证明直角ABG直角AFG是关键23如图P1OA1,P2A1A2,P3A2A3,P2015A2014A2015是等腰直角三角形,点P1,P2,P3,都在函数(x0)x的图象上,斜边OA1,A1A2,A2A3,A2014A2015都在x轴上,则A2015的坐标为(4,0)【考点】反比例函数图象上点的坐标特征;等腰直角三角形【专题】规律型【分析】首先根据等腰直角三角形的性质,知点P1的横、纵坐标相等,再结合双曲线的解析式得到点P1的坐标是(2,2),则根据等腰三角形的三线合一求得点A1的坐标;同样根据等腰直角三角形的性质、点A1的坐标和双曲线的解析式求得A2点的坐标根据A1、A2点的坐标特征即可推而广之得到An点的坐标【解答】解:(1)可设点P1(x,y),根据等腰直角三角形的性质可得:x=y,又,则x2=4,x=2(负值舍去),再根据等腰三角形的三线合一,得A1的坐标是(4,0),设点P2的坐标是(4+y,y),又,则y(4+y)=4,即y2+4y4=0解得,y1=2+2,y2=22,y0,y=22,再根据等腰三角形的三线合一,得A2的坐标是(4,0);同理得到:点A3的坐标是(4,0),则An点的坐标是(4,0)A2015的坐标为 (4,0)故答案是:(4,0)【点评】本题考查了反比例函数的综合应用,解决此题的关键是要根据等腰直角三角形的性质以及反比例函数的解析式进行求解三、解答题(共10小题,满分74分)24如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点(1)求点A的坐标及一次函数解析式(2)求点C的坐标及反比例函数的解析式【考点】反比例函数与一次函数的交点问题【分析】(1)根据OA=OB和点B的坐标易得点A坐标,再将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,;(2)由B是线段AC的中点,可得C点坐标,将C点坐标代入y=(k0)可确定反比例函数的解析式【解答】解:(1)OA=OB,点B的坐标为(0,2),点A(2,0),点A、B在一次函数y=kx+b(k0)的图象上,解得k=1,b=2,一次函数的解析式为y=x+2(2)B是线段AC的中点,点C的坐标为(2,4),又点C在反比例函数y=(k0)的图象上,k=8;反比例函数的解析式为y=【点评】本题考查了用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式25如图,反比例函数y=(k0,x0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作ABx轴于点B,交反比例函数图象于点D,且AB=3BD(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标【考点】反比例函数与一次函数的交点问题;轴对称最短路线问题【分析】(1)根据A坐标,以及AB=3BD求出D坐标,代入反比例解析式求出k的值;(2)直线y=3x与反比例解析式联立方程组即可求出点C坐标;(3)作C关于y轴的对称点C,连接CD交y轴于M,则d=MC+MD最小,得到C(,),求得直线CD的解析式为y=x+1+,直线与y轴的交点即为所求【解答】解:(1)A(1,3),AB=3,OB=1,AB=3BD,BD=1,D(1,1)将D坐标代入反比例解析式得:k=1;(2)由(1)知,k=1,反比例函数的解析式为;y=,解:,解得:或,x0,C(,);(3)如图,作C关于y轴的对称点C,连接CD交y轴于M,则d=MC+MD最小,C(,),设直线CD的解析式为:y=kx+b,y=(3+2)x+22,当x=0时,y=22,M(0,22)【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,以及直线与反比例的交点求法,熟练掌握待定系数法是解本题的关键26“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选23名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计绘制成频数分布直方图,如图所示(1)图中a值为4(2)将跳绳次数在160190的选手依次记为A1、A2、An,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率【考点】列表法与树状图法;频数(率)分布直方图【分析】(1)观察直方图可得:a=8084028=4;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽取到的选手A1和A2的情况,再利用概率公式即可求得答案【解答】解:(1)根据题意得:a=8084028=4,故答案为:4;(2)画树状图得:共有12种等可能的结果,恰好抽取到的选手A1和A2的有2种情况,恰好抽取到的选手A1和A2的概率为: =【点评】此题考查了列表法或树状图法求概率以及直方图的知识用到的知识点为:概率=所求情况数与总情况数之比27为了贯彻落实市委市府提出的“精准扶贫”精神某校特制定了一系列关于帮扶A、B两贫困村的计划现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用【考点】一次函数的应用【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8x)辆,前往A村的小货车为(10x)辆,前往B村的小货车为7(10x)辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:大货车用8辆,小货车用7辆(2)y=800x+900(8x)+400(10x)+6007(10x)=100x+9400(3x8,且x为整数)(3)由题意得:12x+8(10x)100,解得:x5,又3x8,5x8且为整数,y=100x+9400,k=1000,y随x的增大而增大,当x=5时,y最小,最小值为y=1005+9400=9900(元) 答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元【点评】本题考查了一次函数的应用,二元一次方程组的应用关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系28数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为已知tan=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度【考点】解直角三角形的应用仰角俯角问题;解直角三角形的应用坡度坡角问题【分析】首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BEAE可求出答案【解答】解:作DGAE于G,则BDG=,易知四边形DCEG为矩形DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DGtan=35=15m,BE=15+1.6=16.6m斜坡FC的坡比为iFC=1:10,CE=35m,EF=35=3.5,AF=1,AE=AF+EF=1+3.5=4.5,AB=BEAE=16.64.5=12.1m答:旗杆AB的高度为12.1m【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形29如图,PB为O的切线,B为切点,过B作OP的垂线BA,垂足为C,交O于点A,连接PA、AO,并延长AO交O于点E,与PB的延长线交于点D(1)求证:PA是O的切线;(2)若=,且OC=4,求PA的长和tanD的值【考点】切线的判定与性质;相似三角形的判定与性质;解直角三角形【专题】压轴题【分析】(1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明PAOPBO,进而可得PBO=PAO,然后根据切线的性质可得PBO=90,进而可得:PAO=90,进而可证:PA是O的切线;(2)连接BE,由=,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值;由AC=BC,AO=OE,可得OC是ABE的中位线,进而可得BEOP,BE=2OC=8,进而可证DBEDPO,进而可得:,从而求出BD的值,进而即可求出tanD的值【解答】(1)证明:连接OB,则OA=OB,OPAB,AC=BC,OP是AB的垂直平分线,PA=PB,在PAO和PBO中,PAOPBO(SSS)PBO=PAO,PB=PA,PB为O的切线,B为切点,PBO=90,PAO=90,即PAOA,PA是O的切线;(2)连接BE,=,且OC=4,AC=6,AB=12,在RtACO中,由勾股定理得:AO=2,AE=2OA=4,OB=OA=2,在RtAPO中,ACOP,AC2=OCPC,解得:PC=9,OP=PC+OC=13,在RtAPO中,由勾股定理得:AP=3,PB=PA=3,AC=BC,OA=OE,OC=BE,OCBE,BE=2OC=8,BEOP,DBEDPO,即,解得:BD=,在RtOBD中,tanD=【点评】本题考查了切线的判定与性质以及相似三角形的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可30如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把DCE沿DE折叠,点C的对应点为C(1)若点C刚好落在对角线BD上时,BC=4; (2)若点C刚好落在线段AB的垂直平分线上时,求CE的长;(3)若点C刚好落在线段AD的垂直平分线上时,求CE的长【考点】翻折变换(折叠问题);线段垂直平分线的性质;矩形的性质【分析】(1)根据点B,C,D在同一直线上得出BC=BDDC=BDDC求出即可;(2)利用垂直平分线的性质得出CC=DC=DC,则DCC是等边三角形,进而利用勾股定理得出答案;(3)利用当点C在矩形内部时,当点C在矩形外部时,分别求出即可【解答】解:(1)如图1,点B,C,D在同一直线上,BC=BDDC=BDDC=106=4;故答案为:4;(2)如图2,连接CC,点C在AB的垂直平分线上,点C在DC的垂直平分线上,CC=DC=DC,则DCC是等边三角形,设CE=x,易得DE=2x,由勾股定理得:(2x)2x2=62,解得:x=2,即CE的长为2;(3)作AD的垂直平分线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老鹰素描考试题及答案
- 广东法学概论自考试题及答案
- 蓝田法院考试题及答案
- 2025年教师招聘之《幼儿教师招聘》基础试题库含答案详解(a卷)
- 考研舞蹈考试题及答案
- 康复知识考试题及答案
- 2025年中国豪华旋转服装架数据监测报告
- 竞聘店长考试题及答案
- 景观招聘考试题及答案
- 连铸工抗压考核试卷及答案
- 2025年南阳唐河县国有企业公开招聘工作人员8名笔试备考题库及答案解析
- 园林养护服务公司简介范文
- 2025年北京市高考语文真题之名著阅读《红楼梦》
- 2025秋人教版(2024)二年级上册数学教学计划
- 医务人员职业暴露处理流程考核试题与答案
- 农业综合服务战略合作协议书
- 住院患者自备药品管理制度
- 复苏室心理护理
- 公司商铺降租方案(3篇)
- (标准)供电 供水协议书
- 2025铁路安全教育培训考试试题及答案
评论
0/150
提交评论