




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
到乌蒙山区的昭通;从甘肃中部的定西,到内蒙古边陲的阿尔山,看真贫、知真贫,真扶贫、扶真贫,成为“花的精力最多”的事;“扶贫先扶志”“扶贫必扶智”“实施精准扶贫”20162017学年第二学期第一次月考高二文科数学试题第卷(选择题 共60分) 一 、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求) 1.已知集合,则=( ) A. B. C. D. 2.若复数满足,则的共轭复数( ) A B C D 3.已知均为单位向量,它们的夹角为120,那么=() A1 B C D7 4.已知双曲线的离心率为2,则( ) A. 2 B. C. D. 1 5.设满足约束条件,则的最小值是( ) A. B. C. D. 6.不等式的解集为() A1,) B1,1 C(,1 D1, 7 .执行如图所示的程序框图,则输出的S=( ) A.7 B.11 C.26 D.30 8.某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A2 B1 C D 9.某地区根据2008年至2014年每年的生活垃圾无害化处理量y(单位:万吨)的数据,用线性回归模型 拟合y关于t的回归方程为:(t表示年份代码,自2008年起,t的取值分别为1,2,3 .),则下列表述不正确的是( ) A.自2008年起,每年的生活垃圾无害化处理量和年份代码正相关 B.自2008年起,每年的生活垃圾无害化处理量大约增加0.10万吨 C.由此模型可知2016年该地区生活垃圾无害化处理量是1.82万吨 D.由此模型预测出2017年该地区生活垃圾无害化处理量约为1.92万吨 10.从1,2,3,4,5中任取两个不同的数,组成点,则这些点在直线上方的概率为( ) . A. B. C. D. 11.若,则( ) A. B. C. D. 12.若,不等式 成立,则的取值范围是() A. B C D第卷(非选择题 共90分) 二、填空题:(本大题共4小题,每小题5分,共20分) 13.已知复数,则的虚部为 14.函数的图像向右平移个单位后,与函数的 图像重合,则 15.点F为抛物线的焦点,点P在y轴上,PF交抛物线于点Q,且,则p等于 16.已知定义域R的函数满足,则不等式的解集为 三、解答题:(本大题共6小题,70分,解答应写出文字说明,证明过程或演算步骤。) 17.已知数列满足,,等比数列满足,(I)求数列,的通项公式;(II)设,求数列的前n项和 日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(C)1011131286就诊人数y(个)22252926161218.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验(I)求选取的2组数据恰好是相邻两个月的概率;(II)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=bx+a;(III)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?参考公式:b=,a=19.在四棱锥中,平面ABCD,底面ABCD为直角梯形,且, AD=3BC.(I)求证:;(II)侧棱PA上是否存在点E,使得平面PCD? 若存在,指出点E的位置并证明;若不存在,请说明理由.20.已知椭圆的离心率为,且的右焦点与抛物线的焦点相同(1)求椭圆的方程;(2)求经过点分别作斜率为的两条直线,两直线分别与椭圆交于M、N两点,当直线MN与轴垂直时,求的值21.已知函数,(I)求函数的图象在点(1,0)处的切线方程;(II)若对有恒成立,求实数的取值范围选做题(请在以下两题中任选一题做答,如果多做,则按所做的第一题记分)22.在直角坐标系中,曲线的参数方程为(为参数),以原点O为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(I)求曲线的普通方程与曲线的直角坐标方程;(II)设分别为曲线,上的两个动点,求线段的最小值23.已知函数的定义域为(I)求实数的取值范围;(II)若的最大值为,当正数,满足时,求的最小值高二第一次月考(文科)数学参考答案一选择题 AABDB DCDCB BC二填空题 13.1 14. 15. 16.三解答题17. 解:(I)由题意可知:数列是以为首项,以为公差的等差数列,.1分数列的通项公式, .2分由等比数列,而, , 数列的通项公式; .5分(II)由(I)得, 由-得: .10分18.解:(I)设柚到相邻两个月的教据为事件A因为从6组教据中选取2组教据共有15种情况,每种情况都是等可能出现的其中,抽到相邻两个月份的教据的情况有5种,所以(II)由教据求得,由公式求得,再由所以y关于x的线性回归方程为(III)当x=10时,;同样,当x=6时,所以该小组所得线性回归方程是理想的19. 解(I)因为平面,平面, 所以, 因为底面为直角梯形,且, 所以. .2分 又,所以平面, 又因为平面,所以 .4分(II)在PA上存在三等分点E,使得AE=2EP,此时平面PCD .5分 证明如下:取PD上点F,使得DF=2FP, 连结BE,EF,FC, 则,且 .7分 又AD=3BC,, 所以,且BC=EF .9分 四边形BEFC为平行四边形,所以 .10分 因为平面PCD,平面PCD 所以平面PCD .12分20.解:(1)椭圆C1: +=1(ab0)的离心率为e=,且C1的右焦点与抛物线C2:y2=4x的焦点相同,解得a=2,c=,b2=43=1,椭圆C1的方程为(2)由题意,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标也为0,k1=k2=0,与k1k2矛盾,k10,设直线PM:y=k1(x+2),由,得,解得或y=0(舍),M(,),同理N(,),直线MN与y轴垂直, =,化简,得,(k2k1)(4k1k21)=0,又由k1k2,得4k1k21=0,k1k2=21.解:(1)f(x)=1+lnx,f(1)=1=k,故切线方程是:y=x1;(2)由题意,不等式化为ax2xlnx+x2+3,因为x0,所以a2lnx+x+,当x0时恒成立令h(x)=2lnx+x+,则h(x)=+1=,当0x1时,h(x)0,x1时,h(x)0,所以h(x)在(0,1)上递减,在(1,+)上递增故h(x)min=h(1)=2ln1+1+3=4所以a4故所求a的范围是(,422.解:(1)曲线C1的参数方程为(为参数),cos=,sin=,cos2+sin2=1,+=1即曲线C1的普通方程为+=1曲线C2的极坐标方程为sin(+)=3,即sin+cos=3,sin+cos=6,sin=y,cos=x,曲线C2的直角坐标方程为x+y6=0(2)设P1(2cos, sin),则P1到直线C2的距离d=,当sin(+)=1时,d取得最小值=3线段P1P2的最小值为323解:(1)因为函数定义域为R,所以|x+1|+|x1|m0恒成立设函数g(x)=|x+1|+|x1|,则m不大于函数g(x)的最小值又|x+1|+|x1|(x+1)(x1)|=2,即g(x)的最小值为2,所以m2故m的取值范围为(,2;(2)由(1)知n=2,正数a,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园不上学申请书
- 申请书请领导
- 保证非法定代理协议
- 我是一匹野马250字9篇
- 2025年高职院校实训指导教师招聘面试题库附答案
- 健康养生咨询服务协议
- 农业种植合作技术服务合同
- 影视项目投资及制作协议
- 工矿产品买卖协议
- 冠状动脉粥样硬化性心脏病猝死防治专家共识(2024)解读
- 2024年度软件即服务(SaaS)平台租赁合同3篇
- 网络攻防原理与技术 第3版 教案 -第12讲 网络防火墙
- 2024年新课标培训2022年小学英语新课标学习培训课件
- 2024小学语文教学及说课课件:二年级上册《田家四季歌》
- 2024至2030年中国聚脲涂料行业市场发展调研及投资前景分析报告
- 1.1 鸦片战争 课件 2024-2025学年统编版八年级历史上册
- 2024至2030年中国演播室行业市场调查研究及发展战略规划报告
- DB11∕T 420-2019 电梯安装、改造、重大修理和维护保养自检规则
- 国旗台施工合同
- 总代理授权书
- 医疗器械售后服务能力证明资料模板
评论
0/150
提交评论