




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争专题五图形操作与方案设计考情透析:近年来,中考数学试题加强了对动手操作能力的考查,这类试题能够有效地考查实践能力、创新意识和直觉思维能力,解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发展结论,从而解决问题操作题是指通过动手测量、作图(象)、取值、计算等,对某种现象获得感性认识,再利用数学知识进行思考、探索、归纳概括等来解决的一类问题考查学生的动手能力、实践能力,分析和解决问题的能力方案设计题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案有时也给出几个不同的解决方案,要求判断哪个方案较优.题型分析:1利用图形的变换作图(1)利用平移:把一个图形沿一定方向平移一定 距离;(2)利用旋转:把一个图形绕一个定点旋转一定 角度;(3)利用轴对称:作出一个图形的轴对称图形;(4)利用位似:把一个图形按照一定的比例放大或缩小温馨提示:利用图形的变换作图是近几年中考的热点和重点,关键是掌握各种变换的特征.2设计测量方案对于较高不能直接测量或有障碍物不能直接进行测量的物体,利用所学数学知识,设计测量方案,得出测量结果温馨提示:设计与生活密切相关的测量方案,是中考的热点,注意平时对实际操作能力的培养.解决测量问题常构造直角三角形,利用锐角三角函数等知识解决.3动手操作题动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等类型类型一:图形折叠型动手操作题图形折叠型动手操作题就是通过图形的折叠来研究它的相关结论类型二:图形拼接型动手操作题图形拼接问题就是将已知的若干个图形重新拼接成符合条件的新图形类型三:图形分割型动手操作题图形分割型动手操作题就是按照要求把一个图形先分割成若干块,然后再把它们拼接成一个符合条件的图形类型四:作图型动手操作题作图型动手操作题就是通过平移、对称、旋转或位似等变换作出已知图形的变换图形思路分析:(1)解决操作题的基本思路是“作图分析问题解决问题”,具体做法:作图:作出符合题意的图形(象),如折叠、拼接、分割、平移、旋转等;分析问题:找出(证)作图前后哪些几何量变化、哪些没变;解决所提出的问题.(2)解决方案设计题的基本思路是“阅读信息进行方案设计寻求最优方案”.一、折叠剪拼类操作图形折叠问题,就是通过图形的折叠来研究它的相关结论;图形剪拼问题,就是将已知的图形分成若干个图形重新拼合成符合条件的新图形解决折叠问题(实质就是轴对称问题),可利用轴对称变换的性质解题【例1】定义:长宽比为:1(n为正整数)的矩形称为矩形下面我们通过折叠的方式折出一个矩形,如图所示操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形 阅读以下内容,回答下列问题:(1)在图中,所有与CH相等的线段是_,tanHBC的值是_;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图,求证:四边形BCMN是矩形;(3)将图中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是_证明:设正方形ABCD的边长为1,则BD,由折叠性质可知BGBC1,AFEBFE90,则四边形BCEF为矩形,ABFE,EFAD,即,BF,BC:BF1:1,四边形BCEF为矩形分析:(1)由折叠即可得到DGGHCH,根据DGBGBD,就可求出HC,然后运用三角函数的定义即可求出tanHBC的值;(2)只需借鉴阅读中证明“四边形BCEF为矩形”的方法就可解决问题;(3)同(2)中的证明可得:将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,由此规律即可求出【例2】如图是甲、乙两张不同的纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则() A甲、乙都可以B甲、乙都不可以 C甲不可以,乙可以D甲可以,乙不可以 【点拨】对剪开后的纸片进行旋转和平移操作,可得上右的图形:甲、乙都可以拼成和原来面积相等的正方形故选A.二、图形变换类操作此类操作题常与轴对称、平移、旋转、相(位)似等变换有关,掌握图形变换的性质是解这类题的关键【例题3】如图,将ABC在带有平面直角坐标系的网格中依次进行位似变换、轴对称变换和平移变换后得到A3B3C3(网格中每个小正方形的边长均为1)(1)ABC与A1B1C1的相似比等于_;(2)在网格中画出A2B2C2,使A2B2C2与A1B1C1关于y轴对称;(3)请写出A3B3C3是由A2B2C2怎样平移得 到的?(4)设点P(x,y)为ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为_【点拨】(1)由AB2,A1B14可知相似比为;(2)可先求出三个顶点关于y轴对称点的坐标,然后顺次连接;(3)由图形看出点A2的坐标为(0,2),A3的坐标为(2,4),可得应先向左平移2个单位,再向上平移 2个单位;(4)点P(x,y)第一次位似变换后的坐标为(2x,2y),第二次关于y轴对称后的坐标为(2x,2y),第三次平移后的坐标为(2x2,2y2)【例题4】 在锐角ABC中,AB4,BC5,ACB45,将ABC绕点B按逆时针方向旋转,得到A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求CC1A1的度数;(2)如图2,连接AA1,CC1.若ABA1的面积为4,求CBC1的面积分析:(1)由旋转的性质可得:A1C1BACB45,BCBC1,又由等腰三角形的性质,即可求得CC1A1的度数(2)由旋转的性质可得:ABCA1BC1,易证得ABA1CBC1,利用相似三角形的面积比等于相似比的平方,即可求得CBC1的面积三、利用图形进行方案设计此类题是近几年来中考出现的新题型,它融计算、设计、作图于一体,独特新颖,是中考的热点之一主要考查观察能力、图形的组合能力、设计能力等【例题5】 某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在ABCD的四条边上,请你设计两种方案: 方案(1):如图(1)所示,两个出入口E、F已确定,请在图(1)上画出符合要求的四边形花园,并简要说明画法; 方案(2):如图(2)所示,一个出入口M已确定,请在图(2)上画出符合要求的梯形花园,并简要说明画法. 分析本题属于开放性试题,不管哪种方案都离不开所设计的四边形的面积是ABCD面积的一半,作平行线是解题的关键,因为平行线间的距离处处相等解方案(1) 画法1:如图1:(1)过F作FHAB交AD于点H;(2)在DC上任取一点G连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形;画法2:如图2:(1)过F作FHAB交AD于点H;(2)过E作EGAD交DC于点G连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形;画法3:如图3(1)在AD上取一点H,使DHCF;(2)在CD上任取一点G连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形方案(2)画法:如图4:(1)过M点作MPAB交AD于点P,(2)在AB上取一点Q,连接PQ,(3)过M作MNPQ交DC于点N,连接QM、PN、MN则四边形QMNP就是所要画的四边形(本题答案不唯一,符合要求即可)四、利用方程、不等式、函数方案设计 此类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,但解决的方法较多,这些问题可以结合方程和不等式(组)来解决一次函数和不等式的方案设计是最近几年中考的命题热点,正确理解题意,找出等量关系,列出函数表达式是解题的关键,分类讨论一定要全面,不能有遗漏【例6】南海地质勘探队在南沙群岛的一个小岛发现很有价值的A,B两种矿石,A矿石大约565吨,B矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元(1)设运送这些矿石的总运费为y元,若使用甲货船x艘,请写出y与x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种方案运费最低并求出最低费用分析:(1)根据这些矿石的总费用为y甲货船运费乙货船运费,即可解答;(2)根据A矿石大约565吨,B矿石大约500吨,列出不等式组,确定x的取值范围,根据x为整数,确定x的取值,即可解答解:(1)y1000x1200(30x),即y200x36000(2)由题意得解得23x25,因为x为整数,所以x23,24,25.方案一:甲货船23艘,则安排乙货船7艘,运费y1000231200731400(元);方案二:甲货船24艘,则安排乙货船6艘,运费y1000241200631200(元);方案三:甲货船25艘,则安排乙货船5艘,运费y1000251200531000(元);经分析得方案三运费最低,为31000元【例题7】小王家是新农村建设中涌现出的“养殖专业户”他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养)计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:(1)小王有哪几种养殖方式? (2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0a50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润收入支出收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)解(1)设他用x只网箱养殖A种淡水鱼由题意,得(2.33)x(45.5)(80x)120700,且(2.33)x(45.5)(80x)120720,又x为整数,x39,40,41,42. 所以他有以下4种养殖方式:养殖A种淡水鱼39箱,养殖B种淡水鱼41箱;养殖A种淡水鱼40箱,养殖B种淡水鱼40箱;养殖A种淡水鱼41箱,养殖B种淡水鱼39箱;养殖A种淡水鱼42箱,养殖B种淡水鱼38箱(2)法一A种鱼的利润1000.1(2.33)4.7(百元),B种鱼的利润550.4(45.5)12.5(百元)四种养殖方式所获得的利润:4.73912.541120575.8(百元);4.74012.540120568(百元);4.74112.539120560.2(百元);4.74212.538120552.4(百元)所以,A种鱼39箱、B种鱼41箱利润最大. 法二设所获的利润为y百元,则y4.7x12.5(80x)1207.8x880当x39时,y有最大值为575.8. 所以,A种鱼39箱、B种鱼41箱利润最大. (3)价格变动后,A种鱼的利润1000.1(1a%)(2.33)(百元),B种鱼的利润550.4(120%)(45.5)8.1(百元)设A、B两种鱼上市时价格利润相等,则有1000.1(1a%)(2.33)8.1,解得a34.由此可见,当a34时,利润相等;当a34时第种方式利润最大;当a34时,第种方式利润最大当堂训练:1如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )AB C D 2一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为_元3.综合与实践:制作无盖盒子任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四角各剪去一个正方形,折成高为4 cm,容积为616 cm3的无盖长方体盒子(纸板厚度忽略不计)(1)请在图1的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕;(2)请求出这块矩形纸板的长和宽任务二:图2是一个高为4 cm的无盖的五棱柱盒子(直棱柱),图3是其底面,在五边形ABCDE中,BC12 cm,ABDC6 cm,ABCBCD120,EABEDC90.(1)试判断图3中AE与DE的数量关系,并加以证明;(2)图2中的五棱柱盒子可按如图所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的长和宽至少各为多少 cm?请直接写出结果(图中实线表示剪切线,虚线表示折痕,纸板厚度及剪切接缝处损耗均忽略不计)解:任务一:(1)如图:(2)设矩形纸板的宽为x cm,则长为2x cm,由题意得4(x24)(2x24)616,解得x115,x23(不合题意,舍去),2x21530,则矩形纸板的长为30 cm,宽为15 cm任务二:(1)AEDE,证明:延长EA,ED分别交直线BC于M,N,ABCBCD120,ABMDCN60,又EABEDC90,MN906030,EMEN,又ABDC,MABNDC(AAS),AMDN,EMAMENDN,AEDE(2)长至少为(184) cm,宽至少为(48) cm4为了贯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园篮球普及课合作协议7篇
- 维修钳工试题库及答案
- 2025-2030工业机器人行业市场调研及产业链投资机会分析报告
- 2025-2030工业机器人应用场景拓展与制造业转型升级关联性研究报告
- 2025-2030工业机器人产业供需结构及未来投资布局战略分析报告
- 2025-2030工业废水零排放处理技术经济可行性报告
- 2025-2030工业废水处理技术升级需求与设备更新周期分析报告
- 2025-2030工业大数据应用与智能制造决策优化研究报告
- 疫情留校申请书500
- 上大专申请书
- 2025年检查检验项目分级审核制度
- MOOC 电工电子实验基础-东南大学 中国大学慕课答案
- 铸剑先生行为分析技术
- 11、2015年10月25日广东省直机关公开遴选公务员笔试真题解析
- 有理数的乘法说课课件(说课一等奖)
- 口腔颌面外科学第十章 口腔颌面部损伤
- JJG 520-2005粉尘采样器
- stata回归结果详解-stata回归解释
- 审计综合实训(周海彬)答案项目三+货币资金审计程序表
- 药品经营质量风险分析评估报告
- 房地产楼盘户型讲解(ppt图文)
评论
0/150
提交评论