




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺 二次函数的应用(09) 一、填空题 1如图,已知直线y=x+3分别交x轴、y轴于点A、B,P是抛物线y=x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=x+3于点Q,则当PQ=BQ时,a的值是 二、解答题 2如图,抛物线y=x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题 (1)填空:点C的坐标为( , ),点D的坐标为( , ); (2)设点P的坐标为(a,0),当|PDPC|最大时,求的值并在图中标出点P的位置; (3)在(2)的条件下,将BCP沿x轴的正方向平移得到BCP,设点C对应点C的横坐标为t(其中0t6),在运动过程中BCP与BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少? 3小明在课外学习时遇到这样一个问题: 定义:如果二次函数y=a1x2+b1x+c1(a10,a1,b1,c1是常数)与y=a2x2+b2x+c2(a20,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数” 求函数y=x2+3x2的“旋转函数” 小明是这样思考的:由函数y=x2+3x2可知,a1=1,b1=3,c1=2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数” 请参考小明的方法解决下面问题: (1)写出函数y=x2+3x2的“旋转函数”; (2)若函数y=x2+mx2与y=x22nx+n互为“旋转函数”,求(m+n)2015的值; (3)已知函数y=(x+1)(x4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=(x+1)(x4)互为“旋转函数” 4如图,在平面直角坐标系中,抛物线y=a(x1)2+4与x轴交于点A、B两点,与y轴交于点C,且点B的坐标为(3,0),点P在这条抛物线上,且不与B、C两点重合过点P作y轴的垂线与射线BC交于点Q,以PQ为边作RtPQF,使PQF=90,点F在点Q的下方,且QF=1设线段PQ的长度为d,点P的横坐标为m (1)求这条抛物线所对应的函数表达式 (2)求d与m之间的函数关系式 (3)当RtPQF的边PF被y轴平分时,求d的值 (4)以OB为边作等腰直角三角形OBD,当0m3时,直接写出点F落在OBD的边上时m的值 5如图,在平面直角坐标系xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC (1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示); (2)点E是直线l上方的抛物线上的一点,若ACE的面积的最大值为,求a的值; (3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由 6如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=x2+x+c经过点E,且与AB边相交于点F (1)求证:ABDODE; (2)若M是BE的中点,连接MF,求证:MFBD; (3)P是线段BC上一点,点Q在抛物线l上,且始终满足PDDQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由 7如图,在平面直角坐标系中,点M的坐标是(5,4),M与y轴相切于点C,与x轴相交于A,B两点 (1)则点A,B,C的坐标分别是A( , ),B( , ),C( , ); (2)设经过A,B两点的抛物线解析式为y=(x5)2+k,它的顶点为E,求证:直线EA与M相切; (3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由 8如图,已知图中抛物线y=ax2+bx+c经过点D(1,0),C(0,1),E(1,0) (1)求图中抛物线的函数表达式 (2)将图中的抛物线向上平移一个单位,得到图中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式 (3)将图中的抛物线绕原点O顺时针旋转90后得到图中的抛物线,所得到抛物线表达式为y2=2px,点D1与D2是旋转前后的对应点,求图中抛物线的函数表达式 (4)将图中的抛物线绕原点O顺时针旋转90后与直线y=x1相交于A、B两点,D2与D3是旋转前后如图,求线段AB的长 9如图,抛物线y=ax2+bx经过点A(1,0)和点B(5,0),与y轴交于点C (1)求此抛物线的解析式; (2)以点A为圆心,作与直线BC相切的A,求A的半径; (3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由 10边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DEDC,DE=DC以直线AB为对称轴的抛物线过C,E两点 (1)求抛物线的解析式; (2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒过点P作PFCD于点F,当t为何值时,以点P,F,D为顶点的三角形与COD相似? (3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由 11如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90得到平行四边形ABOC抛物线y=x2+2x+3经过点A、C、A三点 (1)求A、A、C三点的坐标; (2)求平行四边形ABOC和平行四边形ABOC重叠部分COD的面积; (3)点M是第一象限内抛物线上的一动点,问点M在何处时,AMA的面积最大?最大面积是多少?并写出此时M的坐标 12如图,已知点O(0,0),A(5,0),B(2,1),抛物线l:y=(xh)2+1(h为常数)与y轴的交点为C (1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标; (2)设点C的纵坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1x20,比较y1与y2的大小; (3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值 13已知:抛物线l1:y=x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,) (1)求抛物线l2的函数表达式; (2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标; (3)M为抛物线l2上一动点,过点M作直线MNy轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值 14如图,抛物线经过A(2,0),B(,0),C(0,2)三点 (1)求抛物线的解析式; (2)在直线AC下方的抛物线上有一点D,使得DCA的面积最大,求点D的坐标; (3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足AMH=90?若存在,请求出点H的坐标;若不存在,请说明理由 15如图,抛物线y=x2+bx+c与x轴分别相交于点A(2,0),B(4,0),与y轴交于点C,顶点为点P (1)求抛物线的解析式; (2)动点M、N从点O同时出发,都以每秒1个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网行业ARVR技术应用前景分析报告
- 2025年电子器材行业智能家居器材市场前景及发展趋势研究报告
- 2025年医疗服务行业远程医疗服务市场前景分析报告
- 2025年互联网教育行业未来发展前景预测报告
- 2025年清洁能源行业可再生能源发展现状与前景研究报告
- 2025年医疗大数据行业健康大数据应用前景报告
- 岳阳楼区2025湖南岳阳市岳阳楼区事业单位招聘44人笔试历年参考题库附带答案详解
- 安置房委托代建协议书6篇
- 定西市2025年甘肃省兰州市事业单位招聘(536人)笔试历年参考题库附带答案详解
- 四川省2025年四川乐至县引进急需紧缺专业人才笔试历年参考题库附带答案详解
- 住房供给调控预案
- 培训行业转介绍
- 文科物理(兰州大学)学习通网课章节测试答案
- 人教版高二数学(上)选择性必修第一册1.2空间向量基本定理【教学设计】
- catia考试图纸题目及答案
- pos机风险管理办法
- 2025年行业机器人边缘计算技术应用与场景分析
- 2025年安徽省公务员录用考试《行测》真题及答案
- 2025年加油站行业需求分析及创新策略研究报告
- 2025中国工业传感器行业市场白皮书
- 手机桌面市场深度解析
评论
0/150
提交评论