




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。专题限时集训(十一) 空间中的平行与垂直关系建议A、B组各用时:45分钟A组高考达标一、选择题1(2016南昌一模)设为平面,a,b为两条不同的直线,则下列叙述正确的是()A若a,b,则abB若a,ab,则bC若a,ab,则bD若a,ab,则bBA中,两直线可能平行、相交或异面,故A错;B中,由直线与平面垂直的判定定理可知B正确;C中,b可能平行,也可能在内,故C错;D中,b可能平行,也可能在内,还可能与相交,故D错综上所述,故选B.2(2016济南一模)设m,n是两条不同的直线,是两个不同的平面,给出下列四个命题:若mn,m,则n;若m,m,则;若mn,m,则n;若m,m,则.其中真命题的个数为()A1B2C3D4A对于,由直线与平面垂直的判定定理易知其正确;对于,平面与可能平行或相交,故错误;对于,直线n可能平行于平面,也可能在平面内,故错误;对于,由两平面平行的判定定理易得平面与平行,故错误综上所述,正确命题的个数为1,故选A.3如图115所示,直线PA垂直于O所在的平面,ABC内接于O,且AB为O的直径,点M为线段PB的中点现有结论:BCPC;OM平面APC;点B到平面PAC的距离等于线段BC的长其中正确的是()图115ABCDB对于,PA平面ABC,PABC.AB为O的直径,BCAC.又PAACA,BC平面PAC,又PC平面PAC,BCPC.对于,点M为线段PB的中点,OMPA.PA平面PAC,OM平面PAC,OM平面PAC.对于,由知BC平面PAC,线段BC的长即是点B到平面PAC的距离,故都正确4已知,是两个不同的平面,有下列三个条件:存在一个平面,;存在一条直线a,a,a;存在两条垂直的直线a,b,a,b.其中,所有能成为“”的充要条件的序号是()ABCDD对于,存在一个平面,则,反之也成立,即“存在一个平面,”是“”的充要条件,所以对,可排除B,C.对于,存在两条垂直的直线a,b,则直线a,b所成的角为90,因为a,b,所以,所成的角为90, 即,反之也成立,即“存在两条垂直的直线a,b,a,b”是“”的充要条件,所以对,可排除A,选D.5(2016成都二模)在三棱锥PABC中,已知PA底面ABC,ABBC,E,F分别是线段PB,PC上的动点,则下列说法错误的是()图116A当AEPB时,AEF一定为直角三角形B当AFPC时,AEF一定为直角三角形C当EF平面ABC时,AEF一定为直角三角形D当PC平面AEF时,AEF一定为直角三角形B因为AP平面ABC,所以APBC,又ABBC,且PA和AB是平面PAB上两条相交直线,则BC平面PAB,BCAE.当AEPB时,AE平面PBC,则AEEF,AEF一定是直角三角形,A正确;当EF平面ABC时,EF在平面PBC上,平面PBC与平面ABC相交于BC,则EFBC,则EFAE,AEF一定是直角三角形,C正确;当PC平面AEF时,AEPC,又AEBC,则AE平面PBC,AEEF,AEF一定是直角三角形,D正确;B中结论无法证明,故选B.二、填空题6已知P为ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:PABC;PBAC;PCAB;ABBC.其中正确命题的个数是_. 【导学号:67722041】3如图所示,PAPC,PAPB,PCPBP,PA平面PBC.又BC平面PBC,PABC.同理PBAC,PCAB,但AB不一定垂直于BC.7在三棱锥CABD中(如图117),ABD与CBD是全等的等腰直角三角形,O是斜边BD的中点,AB4,二面角ABDC的大小为60,并给出下面结论:ACBD;ADCO;AOC为正三角形;cos ADC;四面体ABCD的外接球表面积为32.其中真命题是_(填序号)图117由题意知BDCO,BDAO,则BD平面AOC,从而BDAC,故正确;根据二面角ABDC的大小为60,可得AOC60,又直线AD在平面AOC的射影为AO,从而AD与CO不垂直,故错误;根据AOC60,AOCO可得AOC为正三角形,故正确;在ADC中 ,ADCD4,ACCO2,由余弦定理得cos ADC,故错误;由题意知,四面体ABCD的外接球的球心为O,半径为2,则外接球的表面积为S4(2)232,故正确8正方体ABCDA1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是_(填序号)ACBE;B1E平面ABCD;三棱锥EABC的体积为定值;直线B1E直线BC1.因为AC平面BDD1B1,故,正确;记正方体的体积为V,则VEABCV为定值,故正确;B1E与BC1不垂直,故错误三、解答题9(2016北京高考)如图118,在四棱锥PABCD中,PC平面ABCD,ABDC,DCAC.图118(1)求证:DC平面PAC.(2)求证:平面PAB平面PAC.(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA平面CEF?说明理由解(1)证明:因为PC平面ABCD,所以PCDC.2分又因为DCAC,且PCACC,所以DC平面PAC.4分(2)证明:因为ABDC,DCAC,所以ABAC.因为PC平面ABCD,所以PCAB.又因为PCACC,所以AB平面PAC.8分又AB平面PAB,所以平面PAB平面PAC.9分(3)棱PB上存在点F,使得PA平面CEF.10分理由如下:取PB的中点F,连接EF,CE,CF.又因为E为AB的中点,所以EFPA.又因为PA平面CEF,且EF平面CEF,所以PA平面CEF.14分10(2016青岛模拟)如图119,四棱锥PABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是ABC60的菱形,M为PC的中点图119(1)求证:PCAD;(2)求点D到平面PAM的距离解(1)证明:法一:取AD中点O,连接OP,OC,AC,依题意可知PAD,ACD均为正三角形,所以OCAD,OPAD,又OCOPO,OC平面POC,OP平面POC,所以AD平面POC,又PC平面POC,所以PCAD.5分法二:连接AC,AM,DM,依题意可知PAD,ACD均为正三角形,又M为PC的中点,所以AMPC,DMPC,又AMDMM,AM平面AMD,DM平面AMD,所以PC平面AMD,又AD平面AMD,所以PCAD.5分(2)由题可知,点D到平面PAM的距离即点D到平面PAC的距离,由(1)可知POAD,又平面PAD平面ABCD,平面PAD平面ABCDAD,PO平面PAD,所以PO平面ABCD,即PO为三棱锥PADC的高在RtPOC中,POOC,PC,在PAC中,PAAC2,PC,边PC上的高AM,所以SPACPCAM.8分设点D到平面PAC的距离为h,由VDPACVPACD得SPAChSACDPO,又SACD22,所以h,解得h,所以点D到平面PAM的距离为.12分B组名校冲刺一、选择题1(2016乌鲁木齐三模)如图1110,在多面体ABCDEFG中,平面ABC平面DEFG,ACGF,且ABC是边长为2的正三角形,四边形DEFG是边长为4的正方形,M,N分别为AD,BE的中点,则MN()图1110A.B4C.D5A如图,取BD的中点P,连接MP,NP,则MPAB,NPDE,MPAB1,NPDE2.又ACGF,ACNP.CAB60,MPN120,MN,故选A.2如图1111,四边形ABCD中,ADBC,ADAB,BCD45,BAD90,将ADB沿BD折起,使平面ABD平面BCD,构成三棱锥ABCD.则在三棱锥ABCD中,下列命题正确的是()图1111A平面ABD平面ABCB平面ADC平面BDCC平面ABC平面BDCD平面ADC平面ABCD在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,BDCD.又平面ABD平面BCD,且平面ABD平面BCDBD,CD平面ABD,则CDAB.又ADAB,ADCDD,AB平面ADC,又AB平面ABC,平面ABC平面ADC,故选D.3(2016贵阳二模)如图1112,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在AEF内的射影为O,则下列说法正确的是()图1112AO是AEF的垂心BO是AEF的内心CO是AEF的外心DO是AEF的重心A由题意可知PA,PE,PF两两垂直,PA平面PEF,从而PAEF,而PO平面AEF,则POEF.POPAP,EF平面PAO,EFAO,同理可知AEFO,AFEO,O为AEF的垂心故选A.4(2016长沙模拟)如图1113,正方体ABCDA1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF,则下列结论中错误的是()图1113AACBFB三棱锥ABEF的体积为定值CEF平面ABCDD异面直线AE,BF所成的角为定值D对于选项A,连接BD,易知AC平面BDD1B1.BF平面BDD1B1,ACBF,故A正确;对于选项B,AC平面BDD1B1,A到平面BEF的距离不变EF,B到EF的距离为1,BEF的面积不变,三棱锥ABEF的体积为定值,故B正确;对于选项C,EFBD,BD平面ABCD,EF平面ABCD,EF平面ABCD,故C正确;对于选项D,异面直线AE,BF所成的角不为定值,当F与B1重合时,令上底面中心为O,则此时两异面直线所成的角是A1AO,当E与D1重合时,点F与O重合,则两异面直线所成的角是OBC1,这两个角不相等,故异面直线AE,BF所成的角不为定值,故D错误二、填空题5(2016衡水二模)如图1114,正方形BCDE的边长为a,已知ABBC,将ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,关于翻折后的几何体有如下描述:图1114AB与DE所成角的正切值是;ABCE;VBACEa3;平面ABC平面ACD.其中正确的有_(填序号)作出折叠后的几何体直观图如图所示:ABBCa,BEa,AEa.ADa,ACa.在ABC中,cosABC.sinABC.tan ABC.BCDE,ABC是异面直线AB,DE所成的角,故正确连接BD,CE,则CEBD,又AD平面BCDE,CE平面BCDE,CEAD.又BDADD,BD平面ABD,AD平面ABD,CE平面ABD.又AB平面ABD,CEAB,故错误VBACEVABCESBCEADa2a,故正确AD平面BCDE,BC平面BCDE,BCAD.又BCCD,CDADD,CD,AD平面ACD,BC平面ACD.BC平面ABC,平面ABC平面ACD,故正确故答案为.6(2016太原二模)已知在直角梯形ABCD中,ABAD,CDAD,AB2AD2CD2,将直角梯形ABCD沿AC折叠成三棱锥DABC,当三棱锥DABC的体积取最大值时,其外接球的体积为_ 【导学号:67722042】当平面DAC平面ABC时,三棱锥DABC的体积取最大值此时易知BC平面DAC,BCAD.又ADDC,AD平面BCD,ADBD,取AB的中点O,易得OAOBOCOD1,故O为所求外接球的球心,故半径r1,体积Vr3.三、解答题7(2016四川高考)如图1115,在四棱锥PABCD中,PACD,ADBC,ADCPAB90,BCCDAD.图1115(1)在平面PAD内找一点M,使得直线CM平面PAB,并说明理由;(2)证明:平面PAB平面PBD.解(1)取棱AD的中点M(M平面PAD),点M即为所求的一个点.2分理由如下:因为ADBC,BCAD,所以BCAM,且BCAM.所以四边形AMCB是平行四边形,所以CMAB.4分又AB平面PAB,CM平面PAB,所以CM平面PAB.6分(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明:由已知,PAAB,PACD,因为ADBC,BCAD,所以直线AB与CD相交,所以PA平面ABCD,所以PABD.8分因为ADBC,BCAD,M为AD的中点,连接BM,所以BCMD,且BCMD,所以四边形BCDM是平行四边形,10分所以BMCDAD,所以BDAB.又ABAPA,所以BD平面PAB.又BD平面PBD,所以平面PAB平面PBD.12分8(2016长春二模)已知等腰梯形ABCD(如图1116(1)所示),其中ABCD,E,F分别为AB和CD的中点,且ABEF2,CD6,M为BC中点现将梯形ABCD沿着EF所在直线折起,使平面EFCB平面EFDA(如图1116(2)所示),N是线段CD上一动点,且CNND.(1)(2)图1116(1)求证:MN平面EFDA;(2)求三棱锥AMNF的体积解(1)证明:过点M作MPEF于点P,过点N作NQFD于点Q,连接PQ.由题知,平面EFCB平面EFDA,又MPEF,平面EFCB平面EFDAEF,MP平面EFDA.又EFCF,EFDF,CFDFF,EF平面CFD.又NQ平面CFD,NQEF.又NQFD,EFFDF,NQ平面EFDA,MPNQ.2分又CNND,NQCF32,且MP(BECF)(13)2,MP綊NQ,四边形MNQP为平行四边形.4分MNPQ.又MN平面EFDA,PQ平面EFDA,MN平面EFDA.6分(2)法一:延长DA,CB相交于一点H,则HCB,HDA.又CB平面FEBC,DA平面FEAD.H平面FEBC,H平面FEAD,即H平面FEBC平面FEADEF,DA,FE,CB交于一点H,且H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文秘专业笔试试题及答案
- 2025至2030中国叉车行业产业运行态势及投资规划深度研究报告
- 2025至2030中国妇科治疗仪行业市场深度分析及前景趋势与投资报告
- 2025至2030中国亚硫酸氢钾行业项目调研及市场前景预测评估报告
- 2025至2030中国逻辑门行业发展研究与产业战略规划分析评估报告
- 2024-2025学年上海复旦大学附中高二(上)期末语文试题及答案
- 2025年高考真题分类汇编必修四 《哲学与文化》文化部分(全国)(原卷版)
- 防火卷闸门安装施工方案
- 物业半年考评方案范本
- 大宗物资采购方案范本
- 2025至2030中国移民服务行业市场发展现状及前景趋势与发展趋势分析与未来投资战略咨询研究报告
- 2025年中国电信招聘笔试参考题库附带答案详解
- 租车紧急预案管理制度
- 2025秋人教版(2024)数学七年级上册教案 1.2.4 绝对值
- ICU呼吸衰竭的护理查房
- 油田试井队管理制度
- 局部麻醉完整教学课件
- (高清版)DB31∕T 1491-2024 社区长者食堂服务规范
- DBJ51/168-2021四川省住宅设计标准
- 工厂员工喝酒免责协议书
- 车位顶账协议书
评论
0/150
提交评论