




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2016年江西省抚州市临川中考数学一模试卷一、选择题(本大题共6小题,每小题3分,共18分)1的倒数是()ABCD2下列运算正确的是()A =9B =2Cab4(ab)=b3D2(ab)=2a2b3某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A6.2小时B6.4小时C6.5小时D7小时4将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()ABCD5如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为 ()A5aB4aC3aD2a6二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1x2,点P(m,n)是图象上一点,那么下列判断正确的是()A当n0时,m0B当n0时,mx2C当n0时,x1mx2D当n0时,mx1二、填空题(本大题共8个题,每小题3分,共24分)7计算:=8一张薄的金箔的厚度为0.000000091m,用科学记数法可表示m9若x1=1是关于x的方程x2+mx5=0的一个根,则方程的另一个根x2=10分解因式:ab24ab+4a=11已知点(3,5)在直线y=ax+b(a,b为常数,且a0)上,则的值为12如图,AB是O的直径,CD是O的弦,AB、CD的延长线交于E点,若AB=2DE,E=18,则AOC的度数为度13把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示则图2中两块阴影部分周长和是cm(用m或n的式子表示)14如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把ADE沿AE折叠,当点D的对点D落在矩形的对角线上,DE的长为三、(本大题共4小题,每小题6分,共24分)15先化简:(),再从2x3的范围内选取一个你喜欢的x值代入求值16如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,B=60,求DE的长17在四边形ABCD中,C=90,AB=AD,ABCD,AE平分BAD交BC于E,请你只用无刻度的直尺画出矩形BCDF(保留作图痕迹)18为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?四、(本大题共4小题,每小题8分,共32分)19近年来,我国很多地区持续出现雾霾天气某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表组别观点频数(人数)A大气气压低,空气不流动mB地面灰尘大,空气湿度低40C汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为% (2)若该市人口约有400万人,请你计算其中持D组“观点”的市民人数(3)对于“雾霾”这个环境问题,请用简短的语言发出倡议20某商场要建一个地下停车场,下图是地下停车场的入口设计示意图,拟设计斜坡的倾斜角为18,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米,(1)为保证斜坡倾斜角为18,应在地面上距点B多远的A处开始斜坡的施工?(精确到0.1米)(2)如果一辆高2.5米的小货车要进入地下停车场,能否进入?为什么?(参考数据:sin18=0.31,cos18=0.95,tan18=0.32)21如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动其中EFD=30,ED=2,点G为边FD的中点(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由22如图,AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F切点为G,连接AG交CD于K(1)如图1,求证:KE=GE;(2)如图2,若ACEF,试判断线段KG、KD、GE间的数量关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求O的半径五、(本大题共2小题,23题10分,24题12分,共22分)23在正五边形ABCDE中,AB=2(1)如图1,将正五边形ABCDE沿AD折叠,点E落在E处,连接BE证明D、E、B三点在一条直线上;填空:BE=(2)如图2,点F在AB边上,且AFAB,沿DF折叠正五边形ABCDE,点A、E的对应点分别为A、E,那么AFB与EDC的大小有什么关系?请说明理由(3)如图3,在正五边形ABCDE中连接AD、BD,动点P在线段AB上(点P与A、D不重合)动点Q在线段DB的延长线上,且AP=BQ,连接PQ交AB于点N,过点P作PMAB于点M 点P、Q在移动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求中线段MN的长度24在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3),直角顶点B在第四象限(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由2016年江西省抚州市临川二中中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1的倒数是()ABCD【考点】倒数【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数【解答】解:()()=1,的倒数是故选D2下列运算正确的是()A =9B =2Cab4(ab)=b3D2(ab)=2a2b【考点】整式的除法;算术平方根;去括号与添括号;负整数指数幂【分析】直接利用整式除法运算法则以及结合算术平方根和负指数幂的性质分贝化简求出答案【解答】解:A、()2=9,故此选项错误,不合题意;B、=2,故此选项错误,不合题意;C、ab4(ab)=b3,正确,符合题意;D、2(ab)=2a+2b,故此选项错误,不合题意故选:C3某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A6.2小时B6.4小时C6.5小时D7小时【考点】加权平均数【分析】根据加权平均数的计算公式列出算式(510+615+720+85)50,再进行计算即可【解答】解:根据题意得:(510+615+720+85)50=(50+90+140+40)50=32050=6.4(小时)故这50名学生这一周在校的平均体育锻炼时间是6.4小时故选:B4将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()ABCD【考点】简单组合体的三视图【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线故选A5如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为 ()A5aB4aC3aD2a【考点】图形的剪拼【分析】如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积【解答】解:如图所示:将正六边形可分为6个全等的三角形,阴影部分的面积为2a,每一个三角形的面积为a,剩余部分可分割为4个三角形,剩余部分的面积为4a故选:B6二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1x2,点P(m,n)是图象上一点,那么下列判断正确的是()A当n0时,m0B当n0时,mx2C当n0时,x1mx2D当n0时,mx1【考点】抛物线与x轴的交点【分析】首先根据a确定开口方向,再确定对称轴,根据图象分析得出结论【解答】解:a=10,开口向上,抛物线的对称轴为:x=,二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1x2,无法确定x1与x2的正负情况,当n0时,x1mx2,但m的正负无法确定,故A错误,C正确;当n0时,mx1 或mx2,故B,D错误,故选C二、填空题(本大题共8个题,每小题3分,共24分)7计算:=【考点】二次根式的加减法【分析】先进行二次根式的化简,然后合并同类二次根式求解【解答】解:原式=2=故答案为:8一张薄的金箔的厚度为0.000000091m,用科学记数法可表示9.1108m【考点】科学记数法表示较小的数【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定本题a=9.1,n=8【解答】解:0.000 000 091m用科学记数法可表示9.1108m9若x1=1是关于x的方程x2+mx5=0的一个根,则方程的另一个根x2=5【考点】根与系数的关系【分析】设方程的另一根为x2,由一个根为x1=1,利用根与系数的关系求出两根之积,列出关于x2的方程,求出方程的解得到x2的值,即为方程的另一根【解答】解:关于x的方程x2+mx5=0的一个根为x1=1,设另一个为x2,x2=5,解得:x2=5,则方程的另一根是x2=5故答案为:510分解因式:ab24ab+4a=a(b2)2【考点】提公因式法与公式法的综合运用【分析】先提取公因式a,再根据完全平方公式进行二次分解完全平方公式:a22ab+b2=(ab)2【解答】解:ab24ab+4a=a(b24b+4)(提取公因式)=a(b2)2(完全平方公式)故答案为:a(b2)211已知点(3,5)在直线y=ax+b(a,b为常数,且a0)上,则的值为【考点】一次函数图象上点的坐标特征【分析】将点(3,5)代入直线解析式,可得出b5的值,继而代入可得出答案【解答】解:点(3,5)在直线y=ax+b上,5=3a+b,b5=3a,则=故答案为:12如图,AB是O的直径,CD是O的弦,AB、CD的延长线交于E点,若AB=2DE,E=18,则AOC的度数为54度【考点】三角形的外角性质;等腰三角形的性质;圆的认识【分析】根据AB=2DE得DE等于圆的半径,在EDO和CEO中,根据三角形的一个外角等于和它不相邻的两个内角的和求解【解答】解:连接OD,AB=2DE,OD=DE,E=EOD,在EDO中,ODC=E+EOD=36,OC=OD,OCD=ODC=36,在CEO中,AOC=E+OCD=18+36=5413把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示则图2中两块阴影部分周长和是4ncm(用m或n的式子表示)【考点】整式的加减【分析】设小长方形卡片的长为xcm,宽为ycm,由图形得到mx=2y,即x+2y=m,分别表示阴影部分两长方形的长与宽,进而表示出阴影部分的周长和,去括号合并后,将x+2y=m代入,即可得到结果【解答】解:设小长方形卡片的长为xcm,宽为ycm,可得:mx=2y,即x+2y=m,根据近题意得:阴影部分的周长为2(mx)+(nx)+2(n2y)+(m2y)=2(2m+2n2x4y)=4m+n(x+2y)=4(m+nm)=4n(cm)故答案为:4n14如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把ADE沿AE折叠,当点D的对点D落在矩形的对角线上,DE的长为1.5【考点】翻折变换(折叠问题);矩形的性质【分析】先依据勾股定理可求得AC的长,然后由翻折的性质可求得AD=AD=3,于是可求得DC的长,接下来,证明ECDADC,依据相似三角形的性质可求得ED=1.5,由翻折的性质可求得DE的长【解答】解:如图所示;连接AC由翻折的性质可知;DE=ED,AD=AD=3,D=EDA=90,EDC=90在ABC中,由勾股定理得:AC=5CD=ACAD=2ECD=DCA,EDC=CDA=90,ECDADC即,解得;ED=1.5DE=1.5故答案为:1.5三、(本大题共4小题,每小题6分,共24分)15先化简:(),再从2x3的范围内选取一个你喜欢的x值代入求值【考点】分式的化简求值【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值【解答】解:原式=,当x=2时,原式=4(x1,0,1)16如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,B=60,求DE的长【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理【分析】(1)由“平行四边形的对边平行且相等”的性质推知ADBC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DFCE),即四边形CEDF是平行四边形;(2)如图,过点D作DHBE于点H,构造含30度角的直角DCH和直角DHE通过解直角DCH和在直角DHE中运用勾股定理来求线段ED的长度【解答】证明:(1)在ABCD中,ADBC,且AD=BCF是AD的中点,DF=又CE=BC,DF=CE,且DFCE,四边形CEDF是平行四边形;(2)解:如图,过点D作DHBE于点H在ABCD中,B=60,DCE=60AB=4,CD=AB=4,CH=CD=2,DH=2在CEDF中,CE=DF=AD=3,则EH=1在RtDHE中,根据勾股定理知DE=17在四边形ABCD中,C=90,AB=AD,ABCD,AE平分BAD交BC于E,请你只用无刻度的直尺画出矩形BCDF(保留作图痕迹)【考点】作图应用与设计作图;矩形的性质【分析】根据矩形的性质得到BCDF,于是过D作DFBC交AB于F即可【解答】解:如图,过D作DFBC交AB于F,则四边形BCDF即为所求18为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?【考点】列表法与树状图法【分析】(1)画出树状图,(2)根据(1)的树形图,利用概率公式列式进行计算即可得解;(3)分别求出球回到甲脚下的概率和传到乙脚下的概率,比较大小即可【解答】解:(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=;(3)由(1)可知球回到甲脚下的概率=,传到乙脚下的概率=,所以球回到乙脚下的概率大四、(本大题共4小题,每小题8分,共32分)19近年来,我国很多地区持续出现雾霾天气某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表组别观点频数(人数)A大气气压低,空气不流动mB地面灰尘大,空气湿度低40C汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=80,n=100,扇形统计图中E组所占的百分比为15% (2)若该市人口约有400万人,请你计算其中持D组“观点”的市民人数(3)对于“雾霾”这个环境问题,请用简短的语言发出倡议【考点】扇形统计图;用样本估计总体;频数(率)分布表【分析】(1)根据B组频数及其所占百分比求得样本容量,再根据频数=总数频率及各组频数之和等于总数,解答即可;(2)用总人数乘以样本中D观点所占百分比即可得;(3)根据各种观点所占百分比,有针对的提出合理的改善意见即可【解答】解:(1)根据题意,本次调查的总人数为4010%=400(人),m=40020%=80,n=400(80+40+120+60)=100,则扇形统计图中E组所占的百分比为100%=15%,故答案为:80,100,15;(2)400=120(万),答:其中持D组“观点”的市民人数约为120万人;(3)根据所抽取样本中持C、D两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车,减少私家车出行的次数20某商场要建一个地下停车场,下图是地下停车场的入口设计示意图,拟设计斜坡的倾斜角为18,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米,(1)为保证斜坡倾斜角为18,应在地面上距点B多远的A处开始斜坡的施工?(精确到0.1米)(2)如果一辆高2.5米的小货车要进入地下停车场,能否进入?为什么?(参考数据:sin18=0.31,cos18=0.95,tan18=0.32)【考点】解直角三角形的应用坡度坡角问题【分析】(1)由题意可得BAD=18,BD=CDCB=1.8(米),然后在RtABD中,由三角函数的性质,即可求得AB的长;(2)首先过C作CEAD,垂足为E,可求得DCE的度数,然后在RtCDE中,由三角函数的性质即可得CE=CDcos18,继而求得答案【解答】解:(1)斜坡的倾斜角为18,BAD=18,BD=CDCB=1.8(米),在RtABD中,AB=5.6(米),答:在地面上距点B约5.6米的A处开始斜坡的施工(2)过C作CEAD,垂足为E,DCE+CDE=90,BAD+ADB=90,DCE=BAD=18,在RtCDE中,CE=CDcos18=2.80.952.7(米),2.52.7,货车能进入地下停车场21如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动其中EFD=30,ED=2,点G为边FD的中点(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由【考点】反比例函数综合题【分析】(1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k、b的值即可;(2)由RtDEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;(3)设F(t,t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式【解答】解:(1)设直线AB的解析式为y=kx+b,A(4,0),B(0,4),解得:,直线AB的解析式为:y=x+4;(2)在RtDEF中,EFD=30,ED=2,EF=2,DF=4,点D与点A重合,D(4,0),F(2,2),G(3,),反比例函数y=经过点G,k=3,反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:点F在直线AB上,设F(t,t+4),又ED=2,D(t+2,t+2),点G为边FD的中点G(t+1,t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(t+3)(t+1)=(t+4)t,解得:t=,m=,经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=22如图,AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F切点为G,连接AG交CD于K(1)如图1,求证:KE=GE;(2)如图2,若ACEF,试判断线段KG、KD、GE间的数量关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求O的半径【考点】圆的综合题【分析】(1)如图1,连接OG根据切线性质及CDAB,可以推出KGE=AKH=GKE,根据等角对等边得到KE=GE;(2)如图2,根据平行得角相等,证明GKDEFG,列比例式可得结论;(3)如图3所示,连接OG,OC,由(1)得KE=GE,根据sinE=设AH=3t,则AC=5t,CH=4t,列式先求t的值,再求出圆的半径【解答】解:(1)如图1,连接OGEG为切线,KGE+OGA=90,CDAB,AKH+OAG=90,又OA=OG,OGA=OAG,KGE=AKH=GKE,KE=GE(2)KG2=KDGE,理由是:连接GD,如图2,ACEF,C=E,C=AGD,E=AGD,GKD=GKD,GKDEFG,KG2=KDEK,由(1)得:EK=GE,KG2=KDGE; (3)连接OG,OC,如图3所示,由(1)得:KE=GEACEFE=ACHsinE=sinACH=,设AH=3t,则AC=5t,CH=4t,KE=GE,ACEF,CK=AC=5t,HK=CKCH=t在RtAHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=,解得t=设O半径为r,在RtOCH中,OC=r,OH=r3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r3t)2+(4t)2=r2,解得r=t=,答:O的半径为五、(本大题共2小题,23题10分,24题12分,共22分)23在正五边形ABCDE中,AB=2(1)如图1,将正五边形ABCDE沿AD折叠,点E落在E处,连接BE证明D、E、B三点在一条直线上;填空:BE=1(2)如图2,点F在AB边上,且AFAB,沿DF折叠正五边形ABCDE,点A、E的对应点分别为A、E,那么AFB与EDC的大小有什么关系?请说明理由(3)如图3,在正五边形ABCDE中连接AD、BD,动点P在线段AB上(点P与A、D不重合)动点Q在线段DB的延长线上,且AP=BQ,连接PQ交AB于点N,过点P作PMAB于点M 点P、Q在移动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求中线段MN的长度【考点】三角形综合题【分析】(1)利用正五边形的性质得出DEADCB即可求出EDA=CDB=36,进而即可得出结论;利用等腰三角形的性质得出AB=AE=2,再判断出ABEDBA,得出比例式求解即可得出结论;(2)利用三角形的内角和和等腰三角形的性质即可求出CDE=1802x=BFA,即可得出结论;(3)先判断出PMAQHB得出MH=2,再判断出PMNNQH即可得出结论【解答】证明:(1)ABCDE是正五边形,EDC=108=DCB 且DC=CB,CDB=36,在DEA和DCB中,DEADCB,EDA=CDB=36,ADB=36,ADB=ADE=36,B,D,E共线,AD=BD,ADB=36,DAB=72,AE=DEAB=AE=2,DE=2,DAE=ADE,BAE=ADB,ABD=ABE,ABEDBA,BE=1,故答案为1;(2)四边形内角和为360,设EDF=x,AFD=144x=DFA,DFB=36+x,AFB=1082x,且CDE=1082x,CDE=BFA(3)如图3,过点Q作QHAB,BAD=72=DBA,DAB=QBH且AP=BQ,AMP=BHQ在PMA和QHB中,PMAQHB,AM=BH,PM=QH,MH=MB+BH=AM+MB=AB=2,在PMN和NQH中,PMNNQH,MN=NH=124在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3),直角顶点B在第四象限(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由【考点】二次函数综合题【分析】(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础若MPQ为等腰直角三角形,则可分为以下两种情况:当PQ为直角边时:点M到PQ的距离为此时,将直线AC向右平移4个单位后所得直线(y=x5)与抛物线的交点,即为所求之M点;当PQ为斜边时:点M到PQ的距离为此时,将直线AC向右平移2个单位后所得直线(y=x3)与抛物线的交点,即为所求之M点ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值如答图2所示,作点B关于直线AC的对称点B,由分析可知,当B、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段BF的长度【解答】解:(1)等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3)点B的坐标为(4,1)抛物线过A(0,1),B(4,1)两点,解得:b=2,c=1,抛物线的函数表达式为:y=x2+2x1(2)方法一:i)A(0,1),C(4,3),直线AC的解析式为:y=x1设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上点P在直线AC上滑动,可设P的坐标为(m,m1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训的方法课件
- 林业安全生产培训会议课件
- 安全培训的态度课件
- 食品安全知识模拟习题+答案
- 医学伦理学的规范体系课后试题(附答案)
- 2025年版《手术室护理实践指南》练习题及答案
- 医院核心规章制度试题(含答案)
- 幼儿园保健医考试试题(附答案)
- 2025年安全知识竞赛题库真题及答案
- 抢救制度试题及答案试卷(含答案)
- 兵团职工面试试题及答案
- 虫媒传染病流行病学调查
- 氟化工艺安全操作课件
- 工程论文写作教学课件
- 培智学校家长培训
- 压力容器数字化交付规范 编制说明
- 《九州通医药简介》课件
- 《学术写作与研究方法》课件
- 评价量规介绍课件
- 分位数因子增广混频分位数回归模型构建及应用研究
- 惠州市人力资源社会保障局编制的劳动合同10篇
评论
0/150
提交评论