



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教案课 题22.1.3二次函数y=a(x-h)2+h的图像和性质课时及授课时间 课时 授课人 年 月 日教学目标 (学习目标)知识与技能使学生理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系。会确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标。过程与方法让学生经历函数y=a(xh)2k性质的探索过程,理解函数y=a(xh)2k的性质。情感态度与价值观是学生了解已知与位置、特殊与一般的辩证关系.教学重点确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系,理解函数y=a(xh)2k的性质教学难点正确理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系以及函数y=a(xh)2k的性质。教学用具幻灯片教学方法 (学习方法)画图,观察、对比,合作交流教学过程一、问答回顾、情境导入1函数y=2x21的图象与函数y=2x2的图象有什么关系?(函数y=2x21的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2函数y=2(x1)2的图象与函数y=2x2的图象有什么关系?3函数y=2(x1)21图象与函数y=2(x1)2图象有什么关系?函数y=2(x1)21有哪些性质?二、做一做、想一想、议一议在刚才的图象中,你能再画出函数y=2(x1)22的图象,并将它与函数y=2(x1)2的图象作比较吗?学生独立完成后小组交流讨论,可各小组派代表上台展示讨论结果;看着刚才画的图象,你能填写下表吗?y=2x2的图象向右平移1个单位y=2(x1)2向上平移1个单位y=2(x1)21的图象开口方向对称轴顶 点问题2:结合上面所画图象以及上表,你能分别找到函数y=2(x1)21与函数y=2(x1)2、y=2x2图象的关系吗?问题3:你能发现函数y=2(x1)21有哪些性质? 对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识; 函数y2(x1)21的图象可以看成是将函数y=2(x1)2的图象向上平移1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。 当x1时,函数值y随x的增大而减小,当x1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。三、归纳提升问题:你能说出函数y=(x1)22的图象与函数y=x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?(函数y(x1)22的图象可以看成是将函数y=x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)要求:你能将你所发现的总结一下吗?归纳:一般地,抛物线y=a(xh)2k与y=ax2 形状相同,位置不同。把抛物线y=ax2 向上(下)向左(右)平移,可以得到抛物线y=a(xh)2k。平移的方向、距离要根据h、k的值来决定。抛物线y=a(xh)2k有如下特点:(1)当a0时,开口向上;当a0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).四、课堂练习: 1、 P37练习 2、补充备用练习【1】已知函数y6x2、y6(x3)23和y6(x3)23。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y6x2得到抛物线y6(x3)23和抛物线y6(x3)23;(4)试讨沦函数y6(x3)23的性质;【2】函数y2(x1)2k的图象与函数y2x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏苏州国家历史文化名城保护区、苏州市姑苏区区属国资集团副总裁招聘2人模拟试卷及答案详解(易错题)
- 2025贵州安顺市参加“第十三届贵州人才博览会”引才招聘1453人模拟试卷及一套答案详解
- 景区安全生产培训制度课件
- 张琪的创业机会课件
- 小学传统文化综合实践活动方案
- 医疗器械质量管理体系文件大全
- 建筑工地安全作业规程与案例
- 电子商务课程教学设计与案例
- 小学语文课堂教学新方法分享
- 2025湖南新五丰股份有限公司公开招聘考前自测高频考点模拟试题带答案详解
- 专业人才培养方案论证报告(2篇)
- 安全保密管理方案(2篇)
- 常用非金属材料
- 中建八局后备安全总监竞聘
- 2024年北京控股集团有限公司招聘笔试参考题库含答案解析
- 介入在呼吸系统的应用
- ICD编码手术主导词练习
- 耗材售后服务承诺书
- 一元二次方程-相似三角形-锐角三角函数复习
- 冰皮月饼的制作方法课件
- 在职党员到社区报到登记表“双报到”登记表
评论
0/150
提交评论