八年级数学上册 11_2《实数》教学设计 (新版)华东师大版_第1页
八年级数学上册 11_2《实数》教学设计 (新版)华东师大版_第2页
八年级数学上册 11_2《实数》教学设计 (新版)华东师大版_第3页
八年级数学上册 11_2《实数》教学设计 (新版)华东师大版_第4页
八年级数学上册 11_2《实数》教学设计 (新版)华东师大版_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.2 实数【教学目标】一、 知识目标1、了解无理数、实数的概念和实数的分类2、了解实数和数轴上的点是一一对应的关系.3、了解实数的相反数、绝对值、倒数等概念.4、会进行实数的大小的比较.二、能力目标 1、通过对实数进行分类,培养学生的分类意识. 2、用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步体会数形结合的思想.3、通过估算的办法进行实数的大小比较三、情感态度目标通过对实数进行分类的练习,让学生进一步领会分类的思想,鼓励学生要从不同角度入手,寻解决问题的多种途径,训练学生的多角度思维,为他们以后更好地工作作准备.【重点难点】1、 实数概念的建立.2、 实数的分类.3、 比较实数的大小.【教学设想】教学思路:情境质疑概念归纳练习训练应用提高【媒体平台】教具学具准备:多媒体,投影仪,计算器,圆规、三角板、剪刀、方格纸等【课时安排】2课时第1课时【本课目标】1、 了解无理数、实数的意义2、 理解实数与数轴上的点成一一对应的关系【教学过程】1、 情境导入:利用多媒体演示幻灯片1做一做:(1) 用计算器求;(2) 利用平方关系验算所得的结果学生动手操作后,教师利用多媒体演示计算结果:=10414213562,1041421356=1.9999999由这个结果可以得出:你知道产生这种错误现象的原因吗?教师进一步利用多媒体演示计算机计算的结果:=1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605715(计算机计算的结果表明:是一个无限不循环的小数,造成上述错误的原因是计算器计算出的值只是它的一个近似值.)2、课前热身什么是有理数?有理数可以怎样进行分类?3、合作探究(1) 整体感知在社会生活和科学研究中,经常出现象这样无限不循环的小数,这样我们所学的有理数就有着进行扩展的必要,本节课我们将着重学习与之相关的概念.(2)四边互动互动1:师:请同学们把下列各数写成小数的形式. 生:动手一试,交流计算结果师:请同学们把下列各数化成分数的形式:生:讨论交流,并进行解答.师:从上述操作中,你发现什么?师:能写成分数吗?试试看生:讨论交流.(教师指点:请看课本“阅读材料”)明确:分数都可以表示成有限小数或无限循环小数,有限小数或无限循环小数都可以写成分数形式.由于整数可以看成是分母是1的分数,因此,有理数都可以用分形式表示.无限不循环小数不能表示成分数的形式,因此,不是有理数.互动2:师:请你再举出几个无限不循环小数的实例.生:逐个举手,列举实例.师:根据上面的探索结果,你能把小数进行适当地分类吗?请在讨论交流后举手回答.生:讨论交流,举手发言,不断补充完善,达成共识.概括:小数可分为有限小数和无限小数,无限小数又可分为无限循环小数和无限不循环小数.无限不循环小数称为无理数,有理数和无理数统称为实数.实数可以分类成:分数无理数有理数实数整数有限小数或无限循环小数(能表示成分数)无限不循环小数(不能表示成分数)互动3:师:请同学们用剪刀剪出两个同代大小的正方形纸片(设其边长为1),然后把这两个正方形纸片通过适当裁剪,拼接成一个较大的正方形,这个较大正方形的边长是多少?生:动手操作,并回答问题.师:利用多媒体演示课件“拼成正方形”,验证操作的结果(如图所示).师:你能在数轴上找到表示的点吗?画图试试看.生:在讨论合作的基础上,动手操作.师:利用多媒体演示课件“在数轴上找到的点”,验证同学们操作的结果(如图所示).师:在数轴上能够画出表示的点,这说明一个什么问题?生:讨论交流,逐个举手回答,不断补充完善.明确:数轴上的任一点表示的数,不是有理数,就是无理数.数学上可以说明,数轴上的任一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,换句话说,实数与数轴上的点一一对应.互动4:师:利用多媒体演示幻灯片2.在0.5,-,3.14,0,-1,0.2022022202222中整数有: 有理数有: .无理数有: 明确:正确地理解有理数、无理数、实数的概念和分类是解决此类问题的关键.4、 达标反馈判断正误:i. 无理数是无限小数ii. 无限小数是无理数iii. 无理数是开方开不尽的数iv. 无理数不能用分数表示v. 整数和分数统称实数vi. 数轴上的点表示实数vii. 有理数与数轴上的点成一一对应关系5、学习小结本课我们学习了实数的意义和分类,了解实数与数轴上的一一对应.6、实践探索(1) 取若干个边长为1的正方形纸片,请用剪刀拼图的方法,作一个边长为的正方形纸片.(2) 把下列各数填入相应的集合中:3.14,1.414,-,0,-1,0.1010010001实数集合有: 有理数集合有: .无理数集合有: 【板书设计】课题:实数的概念无理数的意义实数的意义及分类投影幕【教学反馈】我国古代数学家关于的研究:圆的周长与直径的比值是一个常数,它是一个无理数,我们可以用有理数来近似表示它.求无理数的近似值,我国古代数学家早已作出了巨大的贡献,在东汉初年的数学书周髀算经里已经载有“周三径一”,称之为“古率”,就是说,直径是1的圆,它的周长是3.到了西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78139年)求得两个比,一是92 29=3.17241,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.)到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是3.14,称为徽率.到南北朝时代的祖冲之(公元429年500年),他已推算出3.14159263.1415927也就是3.1415926,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示的近似值.即22 7及355 113,分别称为的约率和密度.在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪17世纪)才重新发现了这个值第2课时 【本课目标】1、 了解实数的相反数、倒数和绝对值的意义.2、 会用估算的方法进行实数的大小比较【教学过程】1、 复习导入:(1) 无理数是怎样定义的?如何把实数进行分类?(2)实数与数轴上的点成怎样的对应关系?在有理数范围内,加法,乘法具有哪些运算律?有理数的运算顺序是怎样的? 2、课前热身学生展示上节课的“实践活动”中剪纸拼图的结果,并进行相互评价.3、合作探究(1)整体感知上节课我们学习了实数的相关概念,这节课我们将着重探讨实数的大小比较.(2)四边互动互动1:师:有理数a的相反数是什么?非零的有理数a的倒数是什么?有理数a的绝对值是什么?请举手回答.生:独立思考,举手回答,不断完善.师:在实数范围内,上述结论是否正确呢?回答是肯定的.让学生回忆有理数范围内比较大小的方法,体会在实数范围内这些两个数大小的方法依旧成立.互动2:师:利用多媒体演示幻灯片3例1 试估计与的大小关系.计算: (精确到0.01)生:动手操作,交流解答结果.师:在不使用计算器的情况下,你会比较3和2的大小吗?你想到哪些方法?生:讨论交流后,举手上台板演方法1:=18,=12,32方法2:4,2方法3:=1,32归纳可知:实数的大小比较,一般都可以通过使用计算器,用估算的办法达到目的,但有些实数的大小比较,还可以通过作差、作商等方法来达到目的.4、达标反馈比较下列各组实数的大小:(1)和 (2) 5、学习小结实数范围内的相反数、倒数和绝对值的概念与有理数范围内的相应概念相同.有理数范围内的运算法则、运算律、运算顺序及整式的乘法公式,在实数的范围内同样适用.实数的大小比较,一般地都可以通过使用计算器,用估算的方法达到目的,但有些实数的大小比较,还可以通过作差、作商等方法达到目的.6、 实践探索(1)座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是T=2,其中T表示周期(单位:秒),l表示摆长(单位:米),g=9.8米/,假如一台座钟的摆长为0.8米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟发出了多少次滴答声?(答:约33次)(2)任取一个不等于0的正数,利用计算器连续进行开平方运算,观察所得结果有什么规律?你能解释其中的道理吗?(3)巩固练习:课本.【板书设计】课题:实数与数轴(2)实数的相反数、倒数和绝对值的意义实数的大小比较投影幕学生板演内容

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论