


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17.1 勾股定理一、教学目标:1、知识与技能:(1)掌握勾股定理的一些基本证明方法; (2)了解有关勾股定理的历史.2、过程与方法:(1)在定理的证明中培养学生的拼图能力;(2)经历理解勾股定理的证明过程,感悟并掌握勾股定理的证明猜想.3、情感态度与价值观:(1)通过有关勾股定理的历史讲解,对学生进行德育教育;(2)通过数学思维活动,发展学生探究意识和合作交流思想.二、教学重点:理解并熟练勾股定理的证明过程三、教学难点:对勾股定理证明思想的领会四、 教学用具:直尺,四个全等的直角三角形纸片,赵爽弦图,2002年国际数学大会图片五、教学方法:以学生为主体的讨论探索法六、教学过程:1、创设情境激发兴趣(1)预习勾股定理直角三角形的三边关系勾股定理:直角三角形两直角边a、b 的平方和等于斜边c 的平方。 数学表达式:a2+b2 =c2(2)欣赏图片引出课题 通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,激发学生民族自豪感.2、分析探究得出猜想 通过对赵爽弦图图形组成的提问:即由四个全等的直角三角形构成的,让同学们体验对数学图形的探究过程,学习这种研究方法。同时提问:为什么会把这个图案设为大会的会徽?它有什么意义呢?继而教师总结:因为在1700多年前中国古代数学家赵爽用这个弦图证明了勾股定理(出示图片),我们称它为“赵爽弦图”,它反应了中国古代数学家的聪明才智,是我们中国古代数学的骄傲,现在让我们追忆一下古人的足迹,用赵爽弦图证明勾股定理.3、拼图证明得出定理证明方法一:(中国赵爽证法)证明: 大正方形的面积可以表示为 : 也可以表示为 = 赵爽弦图好比将大正方形分“割”成几个部分割的方法从而说明了勾股定理是正确的.证明方法二:(西方毕达哥拉斯证法)证明:大正方形的面积可以表示为: 也可以表示为: = 毕达哥拉斯图好比将小正方形“补”成一个大的图形补的方法从而也说明了勾股定理是正确的4、迁移应用拓展提高ACB如图,将长为5米的梯子AC斜靠在墙上,梯子底端到墙的距离BC长为3米,求梯子上端A到墙的底边的垂直距离AB.解:如图,在RtABC中, BC=3米,AC=5米,根据勾股定理得AB=4米.答:梯子上端A到墙的底边的垂直距离AB为4米.5、回顾小结整体感知(1)本节课我们经历了怎样的学习过程?经历了从复习勾股定理,再到利用多种方法证明定理,最后学会应用定理解决实际问题的过程。()本节课我们学到了什么?通过本节课的学习我们不但知道了著名的勾股定理,还体现了利用割补法来证明数学结论的数形结合思想。()学了本节课后你有什么感想?作为反映自然界基本规律的一条结论,伟大的发现勾股定理在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。同时,勾股定理的发现、验证和应用蕴涵着丰富的文化价值 。6、布置作业巩固加深以上两种证明方法是比较古老的,到目前为止,勾股定理的证明方法已经有四百多种了,著名画家达芬奇,美国总统加菲尔德都证明过,请同学们课后收集有关勾股定理的证明方法,下节课展示、交流。 非常感谢上级领导对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳清蛋白加工创新创业项目商业计划书
- 极地科考支持创新创业项目商业计划书
- 汽车电子系统与云计算服务连接创新创业项目商业计划书
- 汽车合规管理信息系统创新创业项目商业计划书
- 水产品预制菜创新创业项目商业计划书
- 2025年工业污染场地修复技术选择与成本效益评估模型应用研究报告001
- 2025年城市生活垃圾分类处理设施运营与管理研究报告
- 2025年学前教育师资队伍心理健康教育与支持系统研究报告
- 2025年新型城镇化背景下特色小镇产业安全与社会风险分析报告
- 2025年射频识别(RFID)技术在工业互联网智能物流配送中的应用
- 基孔肯雅热的个案护理
- GA/T 2167-2024移民管理机构对外窗口设置规范
- 拥抱大赛活动方案
- DeepSeek在教育和学术领域的应用场景与案例(上中下合集)
- 深圳市生产安全事故调查处理工作规范
- 肺部穿刺护理查房
- GB/T 45701-2025校园配餐服务企业管理指南
- 培训班教师奖惩管理制度
- 成本加酬金管理制度
- 神经阻滞麻醉病例分享
- 2025-2030年中国聚烯烃弹性体(POP)行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论