


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.4 课题学习 最短路径问题教学目标:1、能利用轴对称解决简单的最短路径问题. 2、体会图形的变化在解决最值问题中的作用. 3、感悟转化思想学习重点:BAll 利用轴对称将最短路径问题转化为“两点之间,线 段最短”问题教学过程 一、探索新知问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题这个问题后来被称为“将军饮马问题”你能将这个问题抽象为数学问题吗? 追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; BAl(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图) 问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小? 追问1对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C,都保持CB 与CB的长度相等? 追问2你能利用轴对称的有关知识,找到上问中符合条件的点B吗? 问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小? 作法:BlABC(1)作点B 关于直线l 的对称 点B;(2)连接AB,与直线l 相交 于点C 则点C 即为所求 问题3你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC.由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC追问1证明AC +BC 最短时,为什么要在直线l 上任取一点C(与点C 不重合),证明AC +BC AC+BC?这里的“C”的作用是什么? C 不重合)与A,B 两点的距离和都大于AC +BC,就说明AC + BC 最小 追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的? 二、练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径ABCPQ山河岸大桥基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC的同侧,如何在BC上找到一点R,使PR与QR 的和最小” 三、归纳小结1、本节课研究问题的基本过程是什么? 2、轴对称在所研究问题中起什么作用?四、布置作业教科书P93复习题13第15题非常感谢上级领导对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古第二批次阿拉善盟直事业单位“绿色通道”引进人才需求考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025广西南宁市第三十六中学招聘顶岗教师1人模拟试卷及1套参考答案详解
- 2025年烟台海阳市卫生健康局所属事业单位公开招聘高层次人才(46人)考前自测高频考点模拟试题及答案详解(典优)
- 2025年绥化市中医医院招聘模拟试卷及参考答案详解1套
- 2025年蚌埠市东方人力资源招聘30人模拟试卷及参考答案详解
- 2025年咸阳秦都怡心学校招聘模拟试卷附答案详解(模拟题)
- 2025内蒙古精神卫生中心招聘13名急需紧缺合同制人员考前自测高频考点模拟试题有答案详解
- 2025年甘肃省嘉峪关开放大学招聘公益性岗位人员考前自测高频考点模拟试题及1套完整答案详解
- 2025科学技术部国际科技合作中心SKAO国际组织职员招聘模拟试卷附答案详解
- 2025广西平果市新安镇人民政府城镇公益性岗位人员招聘2人考前自测高频考点模拟试题及答案详解(名校卷)
- 学堂在线 极区航海导航保障 章节测试答案
- 智慧指挥中心建设总体方案设计
- 中小学、幼儿园食堂食材采购项目 (米、面、油(含乳制品))服务方案投标文件(技术方案)
- 医保购药报销讲解
- 医学影像技术增强检查
- 学堂在线 现代生活美学-花香茶之道 章节测试答案
- 夜间驾驶知识课件
- 陕西省西工大附中2022-2023学年七年级上学期第一次月考英语试卷(含答案)
- 初中校长工作手册范本
- QGDW10212-2019电力系统无功补偿技术导则
- 个人车位租赁合同(含充电桩安装)
评论
0/150
提交评论