




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求数列通项公式的常用方法一、累加法 1适用于: -这是广义的等差数列 累加法是最基本的二个方法之一。2解题步骤:若,则 两边分别相加得 例1 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。练习. 已知数列满足,求此数列的通项公式. 答案:裂项求和 评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。二、累乘法 1. 。 -适用于: -这是广义的等比数列,累乘法是最基本的二个方法之二。2解题步骤:若,则两边分别相乘得,例2 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为练习. 已知,求数列an的通项公式答案:-1.评注:本题解题的关键是把原来的递推关系式转化为若令,则问题进一步转化为形式,进而应用累乘法求出数列的通项公式.三、待定系数法 适用于 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。1形如,其中)型(1)若c=1时,数列为等差数列;(2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造辅助数列来求.解题步骤:设,得,与题设比较系数得,所以 ,所以有:因此数列构成以为首项,以c为公比的等比数列,所以 即:.例3 已知数列中,求数列的通项公式。解: 又是首项为2,公比为2的等比数列 ,即练习已知数列中,求通项答案:2形如: (其中q是常数,且n0,1) 若p=1时,即:,累加即可.若时,即:,求通项方法有以下三种方向:i. 两边同除以.目的是把所求数列构造成等差数列即: ,令,则,然后累加求通项.ii. 两边同除以, 目的是把所求数列构造成等差数列。 即: ,令,则可化为,然后转化为待定系数法第一种情况来解。iii. 待定系数法:目的是把所求数列构造成等差数列设.通过比较系数,求出,转化为等比数列求通项.注意:应用待定系数法时,要求pq,否则待定系数法会失效。例4 已知数列满足,求数列的通项公式。解法一(待定系数法):设,比较系数得,则数列是首项为,公比为2的等比数列,所以,即解法二(两边同除以): 两边同时除以得:,下面解法略解法三(两边同除以): 两边同时除以得:,下面解法略3形如 (其中k,b是常数,且)待定系数法解题步骤:通过凑配可转化为 ;比较系数求x、y;解得数列的通项公式;得数列的通项公式。例5 . 在数列中,,求通项.(待定系数法)解:原递推式可化为比较系数可得:x=-6,y=9,上式即为所以是一个等比数列,首项,公比为。 即: , 故。练习 在数列中,求通项.(逐项相减法)解:, 时,两式相减得 .令,则知 即 再由累加法可得. 亦可联立 解出.4形如 (其中a,b,c是常数,且)基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。例6 已知数列满足,求数列的通项公式。解:设 比较系数得, 所以 由,得则,故数列为以为首项,以2为公比的等比数列,因此,则。5.形如时将作为求解分析:原递推式可化为的形式,比较系数可求得,数列为等比数列。例7 已知数列满足,求数列的通项公式。解:设比较系数得或,不妨取,(取-3 结果形式可能不同,但本质相同)则,则是首项为4,公比为3的等比数列,所以练习.数列中,若,且满足,求.答案: .四、不动点法 目的是将递推数列转化为等比(差)数列的方法不动点的定义:函数的定义域为,若存在,使成立,则称为的不动点或称为函数的不动点。分析:由求出不动点,在递推公式两边同时减去,再变形求解。类型一:形如 例8 已知数列中,求数列的通项公式。解:递推关系是对应得递归函数为,由得,不动点为-1,类型二:形如分析:递归函数为(1)若有两个相异的不动点p,q时,将递归关系式两边分别减去不动点p,q,再将两式相除得,其中,(2)若有两个相同的不动点p,则将递归关系式两边减去不动点p,然后用1除,得,其中。例9. 设数列满足,求数列的通项公式.(答案:)分析:此类问题常用参数法化等比数列求解.解:对等式两端同时加参数t,得:,令, 解之得t=1,-2 代入得,相除得,即是首项为,公比为的等比数列, =, 解得.练习. 已知数列满足,求数列的通项答案:五、对数变换法 适用于(其中p,r为常数)型 p0, 例10. 设正项数列满足,(n2).求数列的通项公式.解:两边取对数得:,设,则 是以2为公比的等比数列, ,练习 数列中,(n2),求数列的通项公式. 答案:六、倒数变换法 适用于分式关系的递推公式,分子只有一项例11 已知数列满足,求数列的通项公式。解:求倒数得为等差数列,首项,公差为,七、阶差法(逐项相减法) 1、递推公式中既有,又有 分析:把已知关系通过转化为数列或的递推关系,然后采用相应的方法求解。例12 已知数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国烟草总公司吉林省公司招聘87人笔试题库历年考点版附带答案详解
- 2025年上半年甘肃陇南文县教师资证认定模拟试卷附答案详解(黄金题型)
- 2025年5月四川雅安市公益性岗位安置计划4人考前自测高频考点模拟试题附答案详解(典型题)
- 2025广东湛江市霞山区司法局招聘司法协理员拟聘用人员(第一批)考前自测高频考点模拟试题有完整答案详解
- 2025山东省科创集团有限公司管理储备人才校园招聘20人笔试题库历年考点版附带答案详解
- 2025河南工程学院招聘高层次人才160人模拟试卷及答案详解(全优)
- 2025内蒙古职业技术学院招聘引进专任教师13人考前自测高频考点模拟试题及答案详解(必刷)
- 2025北京大学医学部总务处房地产管理中心宿舍管理员招聘1人模拟试卷及答案详解(名校卷)
- 2025黑龙江齐齐哈尔市富裕县富海镇招聘公益性岗位人员2人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025湖南省职业病防治院高层次人才公开招聘9人模拟试卷及完整答案详解一套
- 内部审核检查记录表
- 数据安全国家标准体系(2025 版)
- DB61-T 5125-2025 绿色生态小区建设评价标准
- 人教版(PEP) 六年级上册 Units 1–2综合检测卷月考一 (含答案含听力原文无音频)
- 不良债权管理办法
- 浙江省质量科学研究院招聘(2025年第二批)笔试模拟试题附答案详解
- 研学旅行设计学习情境三研之有方研学设计06课件
- 面向高效节能的空调换热器微通道结构优化设计与实验验证
- 羊水过少的诊断与处理
- 幕墙清洗安全培训
- 术后常见并发症及处理
评论
0/150
提交评论