




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
33.1几何概型学习目标1了解几何概型与古典概型的区别2理解几何概型的定义及其特点3会用几何概型的概率计算公式求几何概型的概率预习导引1三角形的面积Sah(其中底为a,高为h);圆的面积Sr2.2棱锥的体积VSh,棱柱的体积VSh,球的体积Vr3.知识链接1. 几何概型的概念事件A理解为区域的某一子区域A,如图,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关满足以上条件的试验称为几何概型2. 几何概型的概率计算公式在几何概型中,事件A的概率定义为:P(A),其中,表示区域的几何度量,A表示子区域A的几何度量要点一与长度有关的几何概型例1取一根长为5 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m的概率有多大?解如图所示记“剪得两段绳长都不小于2 m”为事件A.把绳子五等分,于是当剪断位置处在中间一段上时,事件A发生由于中间一段的长度等于绳长的,所以事件A发生的概率P(A).规律方法1.解答本题的关键是将基本事件的全部及其事件A包含的基本事件转化为相应的长度,进而求解2在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A的概率跟踪演练1两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m的概率解记“灯与两端距离都大于2 m”为事件A,则P(A).要点二与面积有关的几何概型例2一只海豚在水池中自由游弋,水池为长30 m,宽20 m的长方形,求此刻海豚嘴尖离岸边不超过2 m的概率解如图所示,区域是长30 m、宽20 m的长方形图中阴影部分表示事件A:“海豚嘴尖离岸边不超过2 m”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率由于区域的面积为3020600(m2),阴影部分的面积为30202616184(m2)所以P(A)0.31.即海豚嘴尖离岸边不超过2 m的概率约为0.31.规律方法解此类几何概型问题的关键是:(1)根据题意确认是否是与面积有关的几何概型问题(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率跟踪演练2(2013陕西高考)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常)若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A1 B.1 C2 D.答案A解析由几何概型知所求的概率P1.要点三与体积有关的几何概型例3一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率解依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体由几何概型的概率公式,可得满足题意的概率为P.规律方法如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A所占的区域体积其概率的计算公式为P(A).跟踪演练3本例条件不变,求这个蜜蜂飞到正方体某一顶点A的距离小于的概率解到A点的距离小于的点,在以A为球心,半径为的球内部,而点又必须在已知正方体内,则满足题意的A点的区域体积为3.P.1下列关于几何概型的说法错误的是()A几何概型也是古典概型中的一种B几何概型中事件发生的概率与位置、形状无关C几何概型中每一个结果的发生具有等可能性D几何概型在一次试验中能出现的结果有无限个答案A解析几何概型与古典概型是两种不同的概型2(2013南昌高一检测)面积为S的ABC,D是BC的中点,向ABC内部投一点,那么点落在ABD内的概率为()A. B. C. D.答案B解析向ABC内部投一点的结果有无限个,属于几何概型设点落在ABD内为事件M,则P(M).3如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为,则阴影区域的面积为()A. B. C. D无法计算答案B解析由几何概型的概率公式知,所以S阴S正.4当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是()A. B. C. D.答案C解析由题意可知在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,据几何概型概率计算公式,得看到黄灯的概率为P.5在1 000 mL水中有一个草履虫,现从中随机取出3 mL水样放到显微镜下观察,则发现草履虫的概率是_答案解析由几何概型知,P.1几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型2几何概型主要用于解决与长度、面积、体积有关的题目3注意理解几何概型与古典概型的区别4理解如何将实际
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 能在电脑上写数学试卷
- 蒲城县高二联考数学试卷
- 班级活动方案策划300字(3篇)
- 水渠围堰施工方案(3篇)
- 河北企业线下活动策划方案(3篇)
- 线上签约活动方案策划(3篇)
- 辽宁水帘施工方案(3篇)
- 杭州混凝土施工方案公司(3篇)
- 银行年度活动策划方案(3篇)
- 农村庭院大门施工方案(3篇)
- 湖北省圆创高中名校联盟2026届高三第一次联合测评 语文试卷(含答案)
- 医务人员职业道德准则理论试题
- 初中地理学科课程规划方案
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- SHSG0522023年石油化工装置工艺设计包(成套技术)内容规定
- 《一次函数的图像》-完整版课件
- 电子束曝光机说明书
- 中国人民银行反洗钱调查审批表
- SMTPCBA外观检验标准
- 社会团体名称预先核准申请书双重登记
- DB32∕T 4112-2021 建筑墙体内保温工程技术规程
评论
0/150
提交评论