《CH3傅里叶变换》PPT课件.ppt_第1页
《CH3傅里叶变换》PPT课件.ppt_第2页
《CH3傅里叶变换》PPT课件.ppt_第3页
《CH3傅里叶变换》PPT课件.ppt_第4页
《CH3傅里叶变换》PPT课件.ppt_第5页
已阅读5页,还剩122页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章 傅里叶变换 信号的正交分解 傅里叶级数 周期信号的频谱 傅里叶变换 抽样信号与抽样定理 引 言 傅里叶级数的发展史: 1807年,法国数学家傅里叶提出“任何”周期信号都可以利用 正弦级数来表示。 1829年,狄义赫利指出,周期信号只有满足了若干限制条件, 才能用傅里叶级数来表示。 傅里叶级数与变换的应用 物理学、组合数学、信号处理、概率、统计、密码学、声学、 光学 等。 EG:反映地球气候的周期性变化很自然地会引入正弦信号; 交流电源产生的正弦电压和电流; 无线电台和电视台发射的信号都是正弦的。 一、 正交函数与正交函数集 设f1(t)和f2(t)是定义在(t1,t2)区间上的两个实 变函数(信号),若在(t1,t2)区间上有 则称 f1(t)和f2(t) 在(t1,t2)内正交。 3.1 信号的正交分解 若f1(t),f2(t), fn(t)定义在(t1,t2)区间上 ,并且在(t1,t2) 内有 则f1(t),f2(t), fn(t) 在(t1,t2)内称为正交函 数集,其中i, r=1,2,n; Ki为一正数。 f1(t),f2(t), fn(t)称为归一化正交函数集 。 二、 完备的正交函数集 如果在正交函数集f1(t),f2(t), fn(t) 之 外,找不到另外一个非零函数fi(t)与该函数集中每 一个函数都正交,则称该函数集为完备正交函数集。 定理1: 设f1(t),f2(t), fn(t) 在(t1,t2)区间 内是某一类信号(函数)的完备正交函数集,则这一类 信号中的任何一个信号f(t)都可以精确地表示为 f1(t),f2(t), fn(t) 的线性组合。 式中,Ci为加权系数,且有 常称正交展开式,有时也称为欧拉傅里叶公式或广 义傅里叶级数, Ci称为傅里叶级数系数。 式子可以理解为:f(t)的能量等于各个分量的能量之 和,即反映能量守恒。定理2也称为帕塞瓦尔定理。 定理2 在式 条件下,有 例3.1.1 已知余弦函数集 cost,cos2t,cosnt(n为整数) (1) 证明该函数集在区间(0,2)内为正交函数集; (2) 该函数集在区间(0,2)内是完备正交函数集吗? (3) 该函数集在区间(0,/2) 内是正交函数集吗? 解:(1) 因为当ir时 可见该函数集在区间(0,2)内满足正交函数集 的定义式,故它在区间(0,2)内是一个正交函数集 。 当i=r时 (2) 因为对于非零函数sint,有 即sint在区间(0,2)内与cosnt正交。故 函数集cosnt在区间(0,2)内不是完备正交函 数集。 (3) 当ir时 对于任意整数,此式并不恒等于零。因此,根据 正交函数集的定义,该函数集cosnt在区间(0,/2) 内不是正交函数集。 结论:一个函数集是否正交,与它所在区间有关 ,在某一区间可能正交,而在另一区间又可能不正交 。 三、 常见的完备正交函数集 三角函数集cos nt,sin nt(n=0,1,2) 在区间(t0,t0+T)内,有 在(t0,t0+T)区间内,三角函数集对于周期为 T的信号组成正交函数集,而且是完备的正交函数集 (其完备性在此不讨论)。而函数集cosnt,sin nt,也是正交函数集,但它们均不是完备的。 (2) 函数集 在(t0,t0+T )区间内,对于周期为T的一类周期信号来说,也是 一个完备的正交函数集。 (3) 函数集 在区间(- ,)内,对于有限带宽信号类来说是一个完 备的正交函数集。这里 称为抽样函数。 3.2 周期信号的傅里叶级数 一、傅里叶级数的三角函数形式: 从数学上讲,当周期信号满足狄里赫利条件时才可展开 为傅里叶级数。 (1)在一个周期内,如果有间断点存在,则间断点的个数 应是有限的; (2)在一个周期内,极大值和极小值的个数是有限的; (3)在一个周期内,信号时绝对可积的。 但在电子、通信、控制等工程技术中的周期信号一般都 能满足这个条件,故以后一般不再特别注明此条件。 周期信号可分解为周期信号可分解为( (三角型傅里叶级数三角型傅里叶级数):): 周期信号可以分解为各次谐波之和。称为周期信号可以分解为各次谐波之和。称为周期信号周期信号f(tf(t) )的的余余 弦型傅里叶级数展开式。弦型傅里叶级数展开式。 另一种形式另一种形式: : 任何周期信号,只要满足狄里赫利条件,都可以分解为许 多频率成整数倍关系的正(余)弦信号的线性组合。 在三角型傅里叶级数展开式中,a0是直流成分;a1cost, b1sint称为基波分量, w=2/T为基波频率; ancosnt, bnsinnt称n次谐波分量。 直流分量的大小,基波分量和各次谐波的振幅、相位取决 于周期信号的波形。有:an是n的偶函数,bn是n奇函数, 例3.2.1 如图所示锯齿波,求其三角型傅里叶级 数展开式。 解 : 由图可知,该信号f(t)在一个周期区间(-,)内,有 由三角型傅里叶级数展开式,得 故该信号f(t)的三角型傅里叶级数展开式为 二、指数形式 与三角型傅里叶级数系数关系 三、周期信号的对称性与傅里叶系数的关系 1、偶函数 若周期信号f(t)波形相对于纵轴是对称的,即 满足f(t)=f(-t) 其傅里叶级数展开式中只含直流分量和余弦分 量,即 2、奇函数 若周期信号f(t)波形相对于纵坐标是反对称的, 即满足 f(t)=-f(-t) 其傅里叶级数展开式中只含有正弦项,即 3、奇谐函数 若周期信号f(t)波形沿时间轴平移半个周期后与 原波形相对于时间轴像对称,即满足 则称为奇谐函数或半波对称函数。 其傅里叶级数展开式中只含有正弦和余弦项的奇 次谐波分量。 4、偶谐函数 若周期信号f(t)波形沿时间轴平移半个周期后与 原波形完全重叠,即满足 则为偶谐函数或半周期重叠函数。 其傅里叶级数展开式中只含有正弦和余弦波的 偶次谐波分量。 一、信号频谱的概念 从广义上说,信号的某种特征量随信号频率变化 的关系,称为信号的频谱,所画出的图形称为信号的频 谱图。 描述各次谐波振幅与频率关系的图形称为振幅频谱 描述各次谐波相位与频率关系的图形称为相位频谱 3.3 典型周期信号的傅里叶级数 则对应的振幅频谱和相位频谱 称为单边频谱。 2、双边频谱 若周期信号f(t)的傅里叶级数展开式为 则对应的振幅频谱Fn 和相位频谱 称为双边频谱。 1、单边频谱 若周期信号f(t)的傅里叶级数展开式为 1、 周期矩形脉冲信号 (1) 傅里叶级数 442 二、常用信号的频谱 周期矩形脉冲信号的三角形式傅里叶级数为 f(t)的指数形式的傅里叶级数为 (2)频谱图 单边频谱图 双边频谱图 3、 周期信号频谱的特点 离散性 - 频谱是离散的而不是连续的,这种频 谱称为离散频谱。 谐波性 - 谱线出现在基波频率= 2/T 的整 数倍上。 收敛性 - 幅度谱的谱线幅度随着n 而逐渐衰减到零。 频谱图的特点(以矩形波的频谱为例) (a)单边振幅频谱与双边振幅频谱 将双边振幅频谱负n一边对折到n一边,并将振幅 相加,便得到单边振幅 (b) 频谱是离散的,两谱线间隔为=2/T (c)直流分量、基波及各次谐波分量的大小正比于脉幅 E和脉宽,反比于周期T,其变化受包络线sinx/x的 牵制。 (d) 当 时,谱线的包络线过 零点。因此 称为零分量频率。 (e) 周期矩形脉冲信号包含无限多条谱线,可分解为 无限多个频率分量,但其主要能量集中在第一个零分 量频率之内。 通常把 这段频率范围称为矩形信号的 有效频谱宽度或信号的占有频带,记作 频谱结构与波形参数的关系(T1, ) 若不变,T1扩大一倍,即T1=41T2=81 (1) 离散谱线的间隔=2/T 将变小,即谱线变 密。 (2) 各谱线的幅度将变小,包络线变化缓慢,即振幅 收敛速度变慢。 (3) 由于不变,故零分量频率位置不变,信号有效频 谱宽度亦不变。 当周期无限增大时,f(t)变为非周期信号,从 而周期信号的离散频谱过渡到非周期信号的连续频 谱. 若T1不变,减小一倍,即T1=41T1=82 如果保持矩形信号的周期 T 不变,而改变脉冲宽 度,此时谱线间隔不变。 若减小 频谱中的第一个零分量频率 =2/ 增大, 同时出现零分量频率的次数减小,相邻两个零分 量频率间所含的谐波分量增大。 并且各次谐波的振幅减小,即振幅收敛速度变慢 。 若增大,则反之。 谱线间隔 =2/T1 只与周期 T1有关,且与T1 成反比; 零值点频率=2m/只与有关,且与成 反比; 谱线幅度与 T1和 都有关系,且与T1 成反比 与成正比。 2、周期矩形信号 一个周期内 的表达式为: (1)三角形式傅里叶级数: 因此 得 (2)指数形式傅里叶级数 3、对称矩形脉冲信号的傅里叶级数 4、 周期锯齿脉冲信号 E/ 2 t f(t) - E/2 T1/2 -T1/2 周期锯齿脉冲信号的频谱只包含正弦分量,谐波的幅度以 1/n的规律收敛。 5、 周期三角脉冲信号 周期三角脉冲的频谱只包含直流、奇次谐波的余弦 分量,谐波的幅度以 的规律收敛。 E f(t) t -T1-T1/2T1/2T1 三、 周期信号的功率谱 f(t)的平均功率定义为在1电阻上消耗的平均功率,即 该式称为帕塞瓦尔(Parseval)定理。它表明周期信号的平 均功率完全可以在频域Fn用加以确定。 实际上它反映周期信号在时域的平均功率等于频域中的直 流功率分量和各次谐波平均功率分量之和。 若f(t)的指数型傅里叶级数展开式代入 与n1的关系称为周期信号的功率频谱,简 称为功率谱。显然,周期信号的功率谱也是离散谱 。 例3.3.1试求图所示周期矩形脉冲信号f(t)在有效 频谱宽度内,谐波分量所具有的平均功率占整个信号 平均功率的百分比。设E=1,T1=1/4, 解: 因为 周期信号的平均功率为 在有效频谱宽度内信号的平均功率为 故 在所给出的周期矩形脉冲情况下,包含在有效频谱宽度内 的信号平均功率约占整个信号平均功率的90%。 34 傅里叶变换 根据完备正交函数中的定理二可知,信号的能量 是不会变的,在各个域中能量应该守恒,也是说之前 用傅里叶级数推得频谱函数是行不通的,怎么解决? 问题:非周期信号的频谱是怎样的? 周期信号T时,周期信号就演变为非周期信号 , 而,T,使得Fn0,那又何谈非周期信号的 频谱问题。 周期信号的离散谱非周期信号的连续谱 一、傅里叶变换 1、频谱密度函数 F()称为频谱密度函数,简称频谱函数 推得: 2、傅里叶变换 傅里叶正变换式,记为: F f(t) =F() 或 f(t)F(). 傅里叶逆变换式,记为: 3、傅里叶变换的存在条件(充分条件) 要使F()存在必须: 是变量t的函数,它可正可负。但如果取 绝对值再进行积分, 则必有 证 : 又 故 如果 则 必然存在。 二、典型信号的傅里叶变换 1、单边指数信号 幅度频谱: 相位频谱 幅度频谱: 相位频谱 2、偶双边指数信号 幅度频谱 相位频谱 3、奇双边指数信号 4、矩形脉冲信号 5、符号函数信号 信号不满足绝对可积条件,但它却存在傅里叶变 换。对奇双边指数信号 : 当a0时,有 6、单位直流信号 该信号也不满足绝对可积条件,但可利用指数 函数取极限 7、单位阶跃信号u(t) 可利用单边指数函数求其傅里叶变换,即 单位冲激函数的频谱等于常数,也就是说,在整个频率 范围内频谱是均匀的。这种频谱常常被叫做“均匀谱”或“ 白色频谱”。 7、冲激函数的傅里叶变换 冲激偶的傅里叶变换 F 上式两边对t 求导得: 同理: F F 三、 傅里叶变换的基本性质 1、 线性 例3.4.1 利用傅里叶变换的线性性质求单位阶跃信号 的频谱函数。 解:因为f(t)=u(t)=1/2+(1/2)sgn(t) 2、 对称性 证明: 因为 将上式中变量 和t互换 傅里叶变换之间存在着对称关系,即信号波形与 信号频谱函数的波形有着互相置换的关系。 其幅度之比为常数2。式中的表示频谱函 数坐标轴必须正负对调。 EG: 例3.4.2若信号f(t)的傅里叶变换为 求 f(t) 解 : 根据对称性得 Sa函数为偶函数 将F()中的换成t,并考虑F()为的实函数 傅里叶变换由定义式可知为 3、奇偶虚实性(折叠性) 无论f(t)是实函数还是复函数,都有: (1) 当f(t)为实函数时,则 当f(t)为实偶函数 f(t) = f(-t) ,则 当f(t)为实奇函数 ,则 (2) 当f(t)为虚函数 ,则 四、尺度变换性 由上可见,信号在时域中压缩等效在频域中扩展 ; 反之,信号在时域中扩展等效在频域中压缩。 特例:f(-t) F(-) 例3.4.3 已知 ,求频谱函数F() 。 解: 根据尺度变换性 的频谱函数 五、时移特性 例3.4.4:求下图所示的单边矩形脉冲信号的频谱 函数F() 。 解: 根据时移特性 幅度谱保持不变,相位谱产生附加相移 六、频移特性(调制定理) 例:求矩形调幅信号的频谱函数,已知f(t)=G(t) cos0t,其中G(t)为矩形脉冲,脉幅为E, 脉宽为。 解 : 七、时域微分特性 EG: 的频谱函数F() 由时域微分性 例3.4.5 如图所示信号f(t)为三角形函数 解: 将f(t)微分两次后,得 八、频域微分特性 例3.4.6 求f(t)=tu(t)的频谱函数F()。 解: 根据频域微分性 九、时域积分性 例3.3.7 求图所示信号f(t)的频谱函数F() 。 解: 对f(t)求两次微分后,得 由时域积分性 十、频域积分性 例3.4.8 已知 求F() 解: =u(+1)- u(-1) 十一、时域卷积定理 解: 因 例3.4.9如图所示的三角形函数 可看做为两个如图所示门函数卷积 。试利用时域卷积定理求其频谱函 数F()。 得 : 例3.4.10一个信号f(t)的希伯特变换 是 f(t)和 的卷积,即 求其傅里叶变换。 解: 因为 根据对称性 十二、频域卷积定理 例3.3.11利用频域卷积定理求f(t)=tu(t)的傅里叶变换 F()。 解: 因为 十三、帕塞瓦尔定理 可推广 例3.4.12 求 解: 因 由帕塞瓦尔定理可得 3.5 周期信号的傅里叶变换 周期信号傅里叶级数 非周期信号 ? 傅里叶变换 一、复指数信号的傅里叶变换 二、 正弦、余弦信号的傅里叶变换 F F 三、单位冲激序列的傅里叶级数与傅里叶变换。 可见,时域周期为T1的 单位冲激序列,其傅里叶变 换也是周期冲激序列,而频 域周期为1,冲激强度相 等,均为1 。 四、一般周期信号的傅里叶变换 对于一般周期为T的周期信号f(t),其指数型傅里 叶级数展开式为 对上式两边取傅里叶变换 一般周期信号的傅里叶变换(频谱函数)是由无 穷多个冲激函数组成。 冲激函数位于信号的各谐波频率n1处,其强 度为相应傅里叶级数系数Fn的2倍。 周期信号的频谱是离散的。它不是有限值,而 是冲激函数,这表明在无穷小的频带范围(即谐频点 )取得了无穷大的频谱值。 解:已知矩形脉冲f (t)的傅里叶级数为: 例3.5.1已知周期矩形脉冲信号f(t)的幅度为E,脉 宽为,周期为T1。试求其频谱函数 设: 利用抽样脉冲序列p(t)从连续信号f(t)中“抽取”一系列 的离散样值。 p(t)称为“取样信号”。 一、抽样信号 1、抽样 3.6 抽样信号与抽样定理 (1)矩形脉冲抽样 E 2、抽样信号fs(t)的频谱 根据频域卷积定理可得抽样信号fs(t)的频谱函数为 f(t) F() ;p(t) P() (t)(t)=f(t) (t)(t-t0)= (t-t0) 时域卷积定理: 频域卷积定理: f s(t)中含有f(t)的全部信息,可从fs(t)恢复原信号f(t) 。 (2)冲激抽样 (t)的抽样性质: (t) (t)=f(0) (t) (t) (t-t0)= (t0) (t-t0) f(t) F() ;p(t) P() 均匀冲激抽样,称为“理想抽样”; 矩形脉冲抽样,也称为“自然取样”。 当s 2m时, Fs()是由原信号的频谱F()的无限个频移组成 。 当s 2m时,则各频移的频谱将相互有重叠部分,无法将它们分 开,因而不能再恢复原信号。 频谱重叠的这种现象可称为混叠现象。 3、频谱混叠 结论:p(t)的频率fs足够高,抽样信号的频谱就不会混叠; 反之,频谱就会混叠,无法恢复原信号。 s变大 s变小 二、时域抽样定理 一个频谱受限的信号f(t),若频谱分布在(-m, m) ,则信号f(t)可以用等间隔的抽样值fs(t) 惟一表示 ,要求抽样信号p(t)的最低频率为2fm. 奈奎斯特间隔: Ts1/(2fm)。连续信号离散化时允 许的最大抽样间隔。 奈奎斯特频率:fs2fm。允许的最低抽样频率。 2、原信号f(t)的恢复 若使均匀冲激抽样信号fs(t)通过一个系统函数为 的理想低通滤波器,则可恢复出原信号。 证明: 由频域分析可知:Y()=Fs()H() 从图中的Fs()和图 (b)可以看出:Y()=F() 所以 :y(t)=f(t) 即在满足抽样定理的条件下,均匀冲激抽样信 号fs(t)通过上述的理想低通滤波器后可完全恢复 信号。 故 证毕 例4.6.1 黑白电视每秒发送30幅图像,每幅图像 又分为525条水平扫描线,每条水平线又在650个点上 采样。求采样频率fs。若此频率为奈奎斯特频率,求 黑白电视信号的最高频率fm。 解:采样频率,即每秒传送的采样点数为: 因 故 例4.6.2 图(a)所示系统。已知 ,系统H1()的频率特性如图(b)所示, H2()为一 个理想低通滤波器。(1) 画出f(t)的频谱图;(2) 若使fs(t)包含f(t)的全部信息,最大间隔Ts应为多 少?(3) 分别画出在奈奎斯特频率及s=4m时的抽 样信号的频谱图Fs() ; 解: (1) 由给出的f0(t)可知其频谱F0()为 所以可画出F0() ,如图(a)所示。 (2) 根据抽样定理,抽样频率应满

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论