




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁科技大学本科生毕业设计(论文) 第 页 380h 平辊轧机设计 摘 要 380h 平辊轧机是轧制生产线上的主要设备之一,其主要由传动系统与压下系统两部 分构成,其作用主要是用来轧制不同规格的钢坯。本文通过对 380h 平辊轧机的设计,将 所学理论知识与实践相结合,培养了我们独立思考能力和分析问题、解决问题的能力,并 提高了对创新意识的培养。设计的主要内容包括 380h 平辊轧机设计方案的确定与论证, 使设计方案能够达到使用要求,并且合理可行,然后进行轧制力能参数的计算,并根据算 出的结果来选择电动机并进行校核、计算,同时对其中的主要零部件,如轧辊、机架、连 接轴、传动轴、压下螺丝等进行强度计算,并对压下螺丝的自锁、牙强度、和耐磨性的校 核,保证了使用的安全性与可靠性,最后对润滑方式进行了简单分析。 关键词关键词:轧机;轧辊;机架;轧制力 全套图纸,加全套图纸,加 153893706 辽宁科技大学本科生毕业设计(论文) 第 页 辽宁科技大学本科生毕业设计(论文) 第 页 the design of 380h mill abstract the level of 380h mill is one of the main equipments in a rolling mill production line.the main pressure system from the drive system with two components, its role is primarily used for rolling billets of different specifications. in this paper, the level of 380h mill design theory will be the combination of knowledge and practice to cultivate our capacity for independent thinking and analysis of issues, problem- solving skills, and increased awareness of the culture of innovation. the key elements of the design level of 380h mill design and feasibility studies to determine, so that the use of design to meet requirements and is reasonably practicable, and then rolling force can be calculated parameters,and in accordance with the results calculated to select the motor and check the calculation, while the main components, such as roller, rack, connecting shaft, transmission shaft, screws and so on down to the strength calculation of pressure from the screw lock, tooth strength and wear resistance of the check to ensure that the use of the safety and reliability, the last of the lubrication analysis of a simple manner. keywords: rolling mill; roll; rack; rolling force 辽宁科技大学本科生毕业设计(论文) 第 页 目 录 摘要 abstract . 1 绪论 . 7 1.1 选题背景和目的 7 1.2 课题的研究方法和内容 7 1.3 国内外线材轧机的发展概况和新技术 8 1.3.1 线材轧机的发展历史 . 8 1.3.2 国外线材轧机的发展 . 8 1.3.3 国内线材轧机的发展 . 9 1.3.4 国内外先进技术 . 9 2 方案设计 11 2.1 线材轧机的轧制力能参数设计 11 2.1.1 孔型系统的选择 . 11 2.1.2 轧制总压力和轧制力矩的设计 . 11 2.2 主电机的选择 11 2.3 轧机机架的设计 11 2.4 轧辊系统设计 12 2.4.1 轧辊的设计 . 12 2.4.2 轧辊轴承的设计 . 12 2.4.3 轧机轧辊调整机构的设计 . 12 2.5 轧机主传动装置设计 12 2.6 系统的润滑 13 3 孔型设计 14 3.1 孔型系统的选择 14 3.1.1 椭圆圆孔型系统的变形系数 . 14 3.1.2 椭圆圆孔型系统的孔型构成 . 14 3.2 孔型尺寸的计算 16 辽宁科技大学本科生毕业设计(论文) 第 页 4 轧辊轧制总压力与轧辊驱动力矩 . 18 4.1 轧制力的计算 18 4.1.1 平均单位压力的计算 . 18 4.1.2 接触面水平投影面积的计算 . 19 4.2 轧辊驱动力矩的计算 20 5 轧机主电动机力矩及电动力功率 . 22 5.1 主电动机力矩 22 5.2 电机容量的选择 22 5.3 附加摩擦力矩 23 5.4 空转力矩 23 5.5 电动机的校核 24 6 机架的设计 . 25 6.1 机架的选择及结构参数 25 6.2 机架强度的计算及校核 25 6.3 机架的变形计算 30 7 轧辊与轧辊轴承设计 32 7.1 轧辊的设计 32 7.1.1 轧辊参数的选择 . 32 7.1.2 轧辊的强度校核 . 32 7.2 轧辊轴承的校核 35 7.2.1 轧辊轴承的选择 . 35 7.2.2 轴承寿命计算 . 36 8 压下装置 38 8.1 压下螺丝螺纹尺寸的确定 38 9 主传动装置设计 39 9.1 联轴器的选择及计算 39 9.2 联接轴的选择及计算 39 9.3 减速机的设计 40 辽宁科技大学本科生毕业设计(论文) 第 页 9.3.1 计算各轴的动力参数 . 40 9.3.2 齿轮设计 . 41 10 润滑方式的选择 . 错误!未定义书签。错误!未定义书签。 10.1 润滑方式的类型 错误!未定义书签。错误!未定义书签。 结束语 . 错误!未定义书签。错误!未定义书签。 致谢 错误!未定义书签。错误!未定义书签。 参考文献 错误!未定义书签。错误!未定义书签。 第 7 页 1 绪论 1.1 选题背景和目的 线材用途十分广泛,除直接用作建筑钢筋外,还可加工成各类专用钢丝,如弹簧用钢 丝、焊丝、镀锌丝、通讯线、钢帘线、钢绞线等;还可加工成其他金属制品,如铆钉、螺 钉、铁钉等。根据资料统计,一般国家线材产量占钢材总产量的5- 15%。我国目前处在经 济发展时期,城市建设和解决居民居住条件仍需要大量线材。此外,国内对金属制品需求 量增加,国际贸易出口量也不断扩大,我国线材产量占钢材总产量的比例达到15%左右 近几年我国线材无论是生产能力还是消费水平均得到了快速发展,2007年我国线材实 际产量已达7921万t,2008年尽管受到国际金融危机的影响,线材实际产量仍然增长到8024 万t。至2011年我国前11个月的线材产量已突破1亿吨。目前我国已成为世界上最大的线材 生产国,年产量己超过世界线材生产总量的三分之一,在线材生产规模不断扩大的同时, 我国在线材生产技术进步、产品研发方面也取得了可喜成效。 但是,在看到我国线材产 业飞速发展的同时,也要清醒的看到我国线材产业目前仍然存在不少的问题;尤其是应该 看到生产规模不断扩大与现有产品结构的不相适应,已成为困扰我国线材产业发展的主要 问题,这也是造成我国线材产业处于生产能力相对过剩而高附加值产品实物质量仍落后于 国外发达国家的根本原因。 1.2 课题的研究方法和内容 本次设计的课题为 380h 平辊轧机设计,我会利用在大学期间所学的知识完成本次设 计。线材轧机主要结构形式由轧辊、轧辊调整机构、轧机机架、轧机主传动装置等部分组 成。要对这几部分进行相应的设计和计算。 具体方法和内容如下: 1.对线材轧机的轧制力能参数进行设计计算(包括孔型设计、轧制力轧制力矩计算、 电机选择等)。 2.对线材轧机的轧辊和轧辊轴承进行设计计算。 3.对线材轧机的机架进行设计计算。 4.对线材轧机的轧辊调整机构进行设计计算。 5.对线材轧机的主传动装置进行设计计算 6.对线材轧机的系统润滑进行说明。 第 8 页 要通过以上的研究内容对我的设计题目进行研究,要将所学知识运用到实际当中去。 提高知识的灵活运用能力。 1.3 国内外线材轧机的发展概况和新技术 1.3.1 线材轧机的发展历史 自第一台线材轧机问世以来已有 100 多年的历史了。线材轧机发展及演变过程主要为 横列式线材轧机、半连续式线材轧机和连续式线材轧机。 20 世纪 40 年代的线材轧机大部分为横列式线材轧机,需要人工喂钢,最大轧制速度 在 10m/s 以下。 由于速度低, 轧件温度大, 影响线材尺寸精度, 因此, 其盘重一般在 8090kg 左右。轧机生产能力为 1015t/h。 在 20 世纪 50 年代研发了半连续式线材轧机,它是将横列式轧机和连续式轧机组合起 来的轧机,粗轧机为连续式布置,精轧机为横列式布置,中轧机组布置成连续式或横列式。 到 20 世纪 50 年代中期,出现了连续式线材轧机,精轧机组一般配置为 68 架水平辊 轧机。60 年代初期,精轧机组配置了立辊,形成了水平辊立辊水平辊的连续式线材轧 机,可实现无扭转轧机制。 1964 年2000 年,高速线材轧机发展很快,全世界已建成 300 多天高速无扭转精轧机 组,其主要有摩根,德马克,阿希洛,达涅利。 1.3.2 国外线材轧机的发展 16 世纪,世界上第一台线材轧机问世,当时是用锻坯轧制线材;比较正规的线材轧机 在 18 世纪出现,由粗轧和精轧两横列式轧机组成。因为采用反围盘及人工喂钢轧制,同 时受头尾温差大的影响,线材存在着尺寸精度差、盘重小、性能不稳定等缺点,限制了横 列式轧机的发展。 为了保证产品质量和提高产量,以及降低成本,必须提高轧制速度。因而,在 20 世 纪初开发了半连续式轧机。该轧机由粗、中、精轧机组构成,粗轧和中轧采用连轧,精轧 采用横列式轧机。实现了机械化操作,轧制速度和生产能力提高了,但品种及质量未有根 本性的好转。 1862 年,在英国建成了第一台连续式轧机,解决了产品品种及质量问题。该轧机机座 采用串列式形式,轧件同时在几个机架中轧制,各道次的金属秒流量相等。可单机驱动, 有较高的调整精度,实现微张力或无张力轧制;由于没有穿梭轧制,没有大活套,所以头 第 9 页 尾温差小,产品性能得到改善。到了 20 世纪 50 年代,随着机械制造、电气传动及控制水 平的提高,轧制速度达到 36m/s。20 世纪 70 年代,摩根公司、施罗西马克公司研制了 45无扭组合连续式线材轧机。轧制速度了达 60m/s。 90 年代以来,美国摩根公司又开发了高精度线材轧机,他们在无扭精度轧机后增加剪 径和定径机架以提高线材精度和轧机产量。1991 年摩根公司提供给巴西内尔格厂棒、线材 轧机投产,最高极限轧制速度为 140m/s,设计轧制速度达到 120m/s,一般采用单线布置。 这就是所谓的第六代高速无扭线材轧机。 1.3.3 国内线材轧机的发展 我国线材生产在解放前,只有几套陈旧、落后的横列式线材轧机,其中最早的唯一一 套复二重式是当时的上海钢铁公司的 255mm 线材轧机。从 1942 年投入到解放前的 7 年 中一共生产线材不到 3 万吨。解放后由上钢二厂接管,通过多年逐步改造、革新,其年设 计能力达到 25 万吨,轧制速度达到 16m/s。1980 年实际年产量达到 37.6 万吨,创造了我 国复二重式线材轧机最高年产记录。 自六十年代到七十年代末期,乃至八十年代初期,我国复二重式线材轧机取得了较大 的发展,三十多套这类轧机相继问世。这期间的发展是与北京钢铁设计院结合上钢二厂复 二重式轧机的特点所做的“复二重式线材轧机”有着密切联系的。 在七十年代初,我国开始研制 45无扭高速线材轧机。1982 年 10 月 1 日,我国与菲 律宾签订合同,向菲律宾出口了一条精轧作业线。 另外,1984 年 5 月,与德国西马克公司签订的马鞍山钢铁公司高速线材轧机技术合作 合同生效,开始为马钢合作制造 75m/s 高速线材轧机成套设备,与 1987 年投产,拉开了中 国引进高速线材轧机的序幕,使我国线材轧机有了质的飞跃。 1.3.4 国内外先进技术 目前国际上最先进的高速线材轧机是:摩根无扭高速悬臂式 45轧机。该机组解决了 轧机振动问题,其办法是取消了接轴式联轴器,采用了精密螺旋伞齿轮与螺旋齿轮轧辊轴 直接啮合连接,代替了普通精轧机上的万向接轴。 目前这种轧机有几个厂进行引进:天津钢厂引进的美国摩根公司高速线材轧机、昆钢引进 德国 sms 公司的高速线材轧机、张家港沙太钢铁公司高速线材轧机的引进、湘钢引进摩根 高速线材轧机。起特点是: 1) 工艺布置优化。全线 26 架轧机呈平立轧制交替布置,轧件在整个轧制过程中 第 10 页 无扭转; 2) 高速轧制。成品轧机的轧制速度为 120m/s,引进最新一代超重型 v 型精轧机, 轧机的功率、负荷、刚度都优于标准型轧机; 3) 产品的高档化。可生产 5.5mm20mm 共 30 个规格线材; 4) 产品盘重大,采用一锭一坯成品,成品每盘单重达 2.2t; 5) 产品性能优质化。采用美国摩根公司最新开发的大风量斯太尔摩控制冷却设 备,成品线材可以直接拉成高强度钢丝; 6) 自动控制系统数字化。提高了轧制过程的控制精度、可靠性和易操作性。 第 11 页 2 方案设计 2.1 线材轧机的轧制力能参数设计 2.1.1 孔型系统的选择 孔型系统一般由延伸孔型系统和精轧孔型系统两部分组成。延伸孔型的作用是压缩轧 件断面,为成品孔型系统提供合适的红坯。它对钢材轧制的产量、质量有很大的影响,但 对产品最后的形状尺寸影响不大。常用的延伸孔型系统一般有箱形、菱方、菱菱、椭 方、六角方、椭圆圆、椭圆立椭圆等;精轧孔型系统一般是方椭圆螺或圆 椭圆螺孔型。 本设计采用椭圆圆孔型系统。 2.1.2 轧制总压力和轧制力矩的设计 线材轧机的总压力根据艾克隆德公式确定,通过孔型设计计算出压下量和给出的轧制 速度等参数算出轧制总压力。 轧制力矩的确定方法有两种,一种是通过轧制力来计算轧制力矩,第二种是根据轧制 能量来推算轧制力矩。本次设计选择第一种方法来确定轧制力矩的大小。 2.2 主电机的选择 电动机主要根据电动机的功率来选择,另外一般选用高转速,用减速器来减速, 而 不采用成本较高的低速电动机,其作用是给整个系统提供动力。 首先确定电机的力矩,再初选电机功率,根据初选的电机功率确定电机的型号。 2.3 轧机机架的设计 轧机机架的作用是在轧制过程中,被轧制的金属作用到轧辊上的全部轧制力,通过轧 辊轴承、轴承座、压下螺丝以及螺母传给机架,并由机座全部吸收,不再传给地基。 机架按结构分为开式和闭式,闭式机架是一个整体框架,强度和刚度很大,得到广泛 应用,所以本设计采用的就是闭式机架。 选择机架的基本尺寸参数,并对机架的强度和刚度进行校核。 第 12 页 2.4 轧辊系统设计 2.4.1 轧辊的设计 轧辊是轧钢机中直接轧制轧件的主要部件,粗轧机组件由上下轧辊及其轴承部件组成 的,轧辊与轧辊轴承通过轴承座安装在轧机机架的窗口内,上轧辊是通过它的轴承座与其 上面的压下螺丝相连,并把垂直向上的轧制压力通过压下螺丝和螺母传给机架,其下面通 过轴承盒支在平衡装置的四根顶杆上。在轧制过程中,轧辊直接与轧件接触,强迫轧件发 生变形。 轧辊结构有辊身、辊颈、和辊头三部分组成。 辊身是轧辊直接与轧件接触的工作部 分。辊颈是轧辊的支撑部分。而辊头则是轧辊与连接轴相接的地方。对轧辊进行强度校核, 通常对辊身只计算弯曲应力, 对辊颈计算弯曲和扭转应力, 对传动端轴头只计算扭转应力。 2.4.2 轧辊轴承的设计 由于各类轧机的结构及工作条件差别很大,因而采用不同类型的轴承。轧辊上使用的 轴承主要是双列球面滚子轴承、四列圆锥滚子轴承以及四列圆柱混子轴承。本次设计选择 四列圆柱滚子轴承。这类轴承的特点是:径向承载能力大,不能承受轴向载荷,径向尺寸 小,允许转速高等。 根据辊颈尺寸选择轧辊轴承的型号,对其进行寿命校核。 2.4.3 轧机轧辊调整机构的设计 上轧辊调整装置即压下装置,压下装置按照轧钢机的类型、轧件的轧制精度等要求, 以及生产率高低的要求可分为:手动、电动、电液及全液压压下机构。本设计采用液压 压下装置,因为轧机上辊调节距离不大,调节速度不快,但调节精度要求高。 2.5 轧机主传动装置设计 轧机主传动装置包括,连接轴,联轴器,齿轮机座,减速器部分组成。本次设计不涉 及此轮机座。 (1)联接轴:其作用是将扭矩从齿轮机座或一个工作机座的轧辊传递给另一个工作 机组的轧辊。它的主要类型为:万向接轴和梅花接轴。 本设计采用万向接轴。 (2)联轴器:主要是齿轮联轴器,作为主电机联轴器或主联轴器。 因为齿轮联轴器结构简单,紧凑,制造容易,并有很高的精度,摩擦损失小,能传递 第 13 页 很大的扭矩,有良好的补偿性能和一定的弹性等特点。 (3)主减速器:作用是把主电机的高速转数变成轧辊需要的低转数,以避免采用成 本较高的低速电动机。 2.6 系统的润滑 润滑的作用不仅是润滑工作表面,以减少磨损,提高效率和延长机件的寿命,同时还 能起到冷却、缓冲、减振、防锈和排污等作用。因此,任何设备的重要部件都离不开润滑。 第 14 页 3 孔型设计 3.1 孔型系统的选择 轧制线材用的孔型按用途分为延伸孔型和精轧孔型。延伸孔型的作用是压缩轧件断面 为成型孔提供红坯。精轧孔型的作用是使轧件最终形成所需的成品断面形状和尺寸。轧制 线材常用的孔型按形状分有箱型孔型系统、菱方孔型系统、菱菱孔型系统、六角孔型 系统、椭圆方孔型系统、椭圆立椭圆孔型系统、椭圆圆孔型系统等。这里选择椭圆 圆孔型系统。为了保证粗轧机组轧制出断面尺寸准确的轧件,最后一道次采用圆孔型。 椭圆圆孔型系统如图 3.1 所示: 图 3.1 椭圆圆孔型系统 3.1.1 椭圆圆孔型系统的变形系数 1.延伸系数: 椭圆圆孔型系统的延伸系数一般不超过 1.31.4,轧件在椭圆孔型中的延伸系数为 1.21.6,轧机在圆孔型中的延伸系数为 1.21.4。 2.宽展系数: 椭圆圆孔型系统的宽展系数为 0.50.95,轧件在圆孔型的宽展系数为 0.30.4。 3.1.2 椭圆圆孔型系统的孔型构成 1.椭圆孔型的构成: 孔型宽度 k b : b bk= (3.1) 式中:b椭圆轧件的宽展; 第 15 页 宽展余量,一般取 0.850.9,这里取 0.9。 孔型高度 k h : hhk= (3.2) 式中:h椭圆轧件的高度。 宽展余量,一般取 0.850.9,这里取 0.9。 辊缝 s: ()hs3 . 02 . 0= (3.3) 椭圆孔型的圆弧半径 r: () ()sh bsh r k + = 4 2 (3.4) 外圆角半径 r: k br)12 . 0 08 . 0 (= (3.5) 2.圆孔型的构成: 孔型高度 k h : r f h y k 22= (3.6) 式中: y f 圆断面轧件的断面面积。 孔型宽度 k b : += rbk2 (3.7) 式中:宽展留的余量,可取 14mm。 圆孔型的扩张半径r: )cos(sin48 )cossin(44 22 2 k kk br bsrrsb r + + = (3.8) 其他尺寸,孔型的扩张角=3015,通常取= 30;外圆角半径 r=25mm;辊 缝 s=25mm. 第 16 页 3.2 孔型尺寸的计算 表 3.1 边长为 120mm 的方坯制成 5.5 线材轧机断面尺寸 轧机号 轧件截面形状 轧件高度 (mm) 轧件宽度(mm) 轧件截面积 8 椭圆 26.4 62.3 1250 9# 圆 35 35.1 960 10# 椭圆 19.2 48.69 715 11# 圆 26.5 26.6 550 12# 椭圆 14.7 36.27 410 13# 圆 20 20 320 以 12#和 13#为例,进行孔型尺寸计算: (1)12#轧机为椭圆孔型,其孔型宽度 k b 、高度 k h 、辊缝 s、椭圆孔型的圆弧半径 r、 外圆角半径 r: 3 . 40 9 . 0 27.36 = b bk mm 7 . 14= hhk mm ()hs3 . 02 . 0= 取1 . 37 .1421. 021. 0=hs mm () () () () 9 . 37 1 . 3 7 . 144 3 . 401 . 3 7 . 14 4 22 = + = + = sh bsh r k mm k br)12 . 0 08 . 0 (= 取03 . 4 3 . 401 . 01 . 0= k brmm (2)13#轧机为圆孔型,其孔型宽度 k b 、高度 k h 、圆孔型的扩张半径r: 202= rhk mm 211202=+=+= rbk mm )30cos2130(sin4208 )30cos2130sin3(204204321 )cos(sin48 )cossin(44 222 22 2 + + = + + = k kk br bsrrsb r =02.10mm 第 17 页 其他轧机的孔型设计结果如下表 3.2: 表 3.2 孔型设计的结果 轧机号 孔型形状 孔高(mm) 孔宽(mm) 轧件面积辊缝(mm) 8 椭圆 26.4 69 1250 4.4 9# 圆 35 36 960 4 10# 椭圆 19.2 54.1 715 4 11# 圆 26.5 27.5 550 4 12# 椭圆 14.7 40.3 410 3.1 13# 圆 20 21 320 3.0 第 18 页 4 轧辊轧制总压力与轧辊驱动力矩 4.1 轧制力的计算 在计算中常用的公式有艾克隆德公式、西姆斯公式、stone 等公式。在具体设计中应 根据具体情况选择应用。 其中艾克隆德公式适用范围是: 1) 热轧型钢时计算平均单位压力; 2) 轧制温度大于 950,材质为 q235; 3) 轧制速度小于 5m/s 时。 轧制压力 p 等于平均单位压力 m p 与接触水平投影面积 f 之乘积。 4.1.1 平均单位压力的计算 本设计中选用艾克隆德公式,由文献2,2- 103知, 艾克隆德公式为: m p =)1 (m+(uk+) (4.1) 式中: m 外摩擦对单位压力影响系数; k 静压力下单位变形力,mpa; 粘性系数, 2 /mmskg; u 平均变形速度 1 s 。 其中第一项)1 (m+是考虑外摩擦的影响,决定m 的经验公式为: 10 1010 )(2 . 1)(6 . 1 hh hhhhr m + = (4.2) 式中: 摩擦系数,硬面铸铁轧辊 =0.8(1.05- 0.0005t),t 为轧制温度, r 轧辊工作半径,mm; 10 hh 、 轧制前后轧件的高度,mm; 第二项中乘积u 是考虑变形速度对变形抗力的影响,其中平均变形速度值 用下式计算: u = 10 2 hh rhv + (4.3) 式中: v 轧制速度,m/s,8840 mm/s; 第 19 页 10 hh 、轧制前后轧件的高度,mm; r 轧辊工作半径,mm; 计算k 和的经验公式为: k =(140.01t)(1.4)(cw)(mnw+0.3)(crw)9.8 (4.4) 式中: t 轧制温度,; )(cw 以%表示的碳的百分含量,本设计中取 0.15; )(mnw 以%表示的 mn 的百分含量,本设计中取 0.30; )(crw以%表示的 cr 的百分含量,本设计中取 0.30。 的计算公式为: = 0.01(140.01t) c (4.5) 式中 c 决定于轧制速度。 c 的选择见下表: 表 3.1 粘度系数 c与轧制速度的对应表 轧制速度(m/s) 6 610 1015 1520 c 1.0 0.8 0.65 0.6 以 12#、13#机为例计算: 其平均压下量 m h为: m h= 10 79 . 0 85 . 0 hh (4.6) m h=mm0295.152079. 027.3685. 0= u = 1 37.88 2027.36 190 0295.15 88402 = + s = 0.01(140.011000)0.8=0.032 2 /mmskg k =(140.011000)(1.40.150.3+0.30.3)9.8=76.048mpa =0.8(1.05- 0.00051000)=0.44 349.0 2027.36 )2027.36(2 .1)2027.36(19044.06 .1 = + =m m p =)349. 01 ( +(37.88032 . 0 048.76+)=106.40mpa 4.1.2 接触面水平投影面积的计算 在简单轧制情况下,计算接触面水平投影面积 f 公式为: 第 20 页 f= lb =hr bb + 2 10 (4.7) 式中: b 轧件平均宽度;mm; l接触弧长度;mm; 10 bb 、轧制前后轧件的宽度;mm; r 轧辊平均工作半径,mm; h压下量,mm np mmf mml 65.98648149.927 4 . 106 149.927438.53 2 20 7 . 14 438.530295.15190 = = + = = 4.2 轧辊驱动力矩的计算 在简单轧制情况下,驱动一个轧辊的力矩 k m 为轧制力矩 z m 和轧辊轴承处摩擦力矩 1f m之和,由文献4,2- 120可知其公式为: k m = z m + 1f m (4.8) 求轧制力矩,由文献4,2- 120可知其公式为: sin 2 d a pamz = = (4.9) 式中:p 轧制力; a轧制力力臂,即合力作用线距两个轧辊中心线的垂直距离; d轧辊直径; 咬入角,)1arccos( d h =; 合力作用点的角度, =; 力臂系数,热轧时: =0.5,冷轧时: =0.350.45 计算得: =17.16) 380 0295.15 1arccos( =08 . 8 17.165 . 0 第 21 页 mma72.2608 . 8 sin 2 380 = mmnmz=93.263589172.2665.98648 求轧辊轴承处摩擦力矩,其公式为: 11 pm f = (4.10) 2 1 d = 式中:p 轧制力; 1 轧辊轴承处摩擦圆半径; d轧辊轴颈直径; 轧辊轴承摩擦系数,滚动轴承 =0.004 1f m=98648.650.46=45378.379mmn 轧辊驱动力矩: k m =2635891.93+45378.379=2681270.31mmn 两个辊总驱动力矩: kk mm2= =22681270.31=5362540.62mmn (4.11) 第 22 页 5 轧机主电动机力矩及电动力功率 5.1 主电动机力矩 主电动机轴上的力矩由四部分组成,即: donkondonkon f d mmmf i mz mmmf i mmz m+=+ + = 2 1 (5.1) 式中: d m 电动机力矩; z m 轧辊上的轧制力矩; f m附加摩擦力矩, 即当轧制时由于轧制力作用在轧辊轴承、 传动机构及其他传 动件中的摩擦而产生的附加力矩, 2 1 mf i m m f f +=; kon m 空转力矩,轧机空转时在轧辊轴承及传动装置中所产生的摩擦力矩及其他 阻力距; don m 动力矩,轧辊运转速度不均匀时,各部件由于有加速或减速所引起的惯性 力所产生的力矩;因 380 平辊轧机属于不可逆式,故0= don m; i轧辊与主电动机的传动比。 5.2 电机容量的选择 轧辊转速 z n : min/ 5 . 444 38014 . 3 6060 r v d v nz= = 可得轧制速度min/8840mmv = 式中:d工作辊直径。 由轧辊力矩初选电动机功率: 9550 zk er nm n = (5.2) 89 . 0 96 . 0 99 . 0 94 . 0 = 万向接轴联轴器减速器 故,kwner445.280 89. 09550 444.55362.540 = = 第 23 页 初选电机功率应满足 erer nn,考虑到生产的发展以及需要轧制不同的钢种, er n 应取 的大些,取电机功率 er n 为 500kw,电机主要参数为: 型号:zksl- 450- 21 额定功率:500kw 转速:1200r/min 电机额定转矩 er m为: mn n n m er er er =3979 1200 500 95509550 (5.3) 5.3 附加摩擦力矩 附加摩擦力矩包括:轧制总压力在轧辊上产生的附加摩擦力矩 1f m;各转动零件推算 到主电动机轴上的附加摩擦力矩 2f m。 i m i mm m k fz f ) 1 1 () 1 1 ( 1 1 1 2 = + = (5.4) 式中: 1 主电动机到轧辊之间的传动效率,不包括空转力矩 kon m的损失。 89 . 0 96 . 0 99 . 0 94 . 0 = 万向接轴联轴器减速器 7 . 2 5 . 444 1200 = z er n n i 则可求得: mmnm f =138.122738 7 . 2 2681270.31 ) 1 89. 0 1 ( 2 主电动机轴上的附加总摩擦力矩为: mmnmf i m m f f =+=+=945.139544138.122738 7 . 2 45378.379 2 1 5.4 空转力矩 空转力矩有各传动零件的重量产生的摩擦损失,公式如下: mnmm erkon =95.198397905. 0)06. 003. 0( (5.5) 因此主电动机力矩 d m 为: 第 24 页 mmnmmmf i mz m donkond =+=+= 6 1031 . 1 0198950945.139544 7 . 2 93.2635891 5.5 电动机的校核 对于不可逆轧机不需要进行发热校核,只需要进行过载校核。 电动机的过载系数,由文献4,2- 161可知其公式为: 35 . 1 3979000 5362540.62 max = er ca m m m (5.6) 式中: max m静负载最大力矩。 对于不可逆式轧机,过载系数: ca k2.01.5=k 所以过载校核通过。 第 25 页 6 机架的设计 6.1 机架的选择及结构参数 轧机的机架是工作机座的重要部件,轧辊轴承座及轧辊调整装置等都安装在机架 上。机架要承受轧制力,必须要有足够的强度和刚度。380h 平辊轧机要求具有较高的强 度和刚度,因此选择闭式机架。机架的材料为 16mn。机架的主要结构参数如图 6.1 所示。 图 6.1 机架结构图 6.2 机架强度的计算及校核 选用的机架材料为 16mn,属于低碳合金钢。机架的力学性能为:mpa s 260=; mpa b 500=;mpa n b b 200 5 . 2 500 = 。n 为安全系数,这里取 2.5。 机架外负荷和几何尺寸都与机架窗口垂直中心线对称,故可将机架简化为一个由机架 立柱和上下横梁的中性轴组成的自由框架。机架受力图如图 6.2 所示: 第 26 页 图 6.2 机架受力图 图上作用于机架上的垂直力 r,n p r325.49324 2 65.98648 2 = 机架自由框架所受弯曲力矩如图 6.3 所示: 图 6.3 自由框架弯曲力矩图 第 27 页 机架窗口垂直中心线处静不定力矩 1 m ,其公式为: 3 1 2 2 1 1 3 1 2 2 1 1 1 1 22 44 4 i l i l i l i l i l i l rl m + + = (6.1) 式中: 1 l 机架横梁的中性线长度,mml830 1= ; 2l 机架立柱的中性线长度,mml2205 2 =; 1 i 机架上横梁的惯性距; 2 i 机架立柱的惯性矩; 3 i 机架下横梁的惯性矩。 由于上下横梁惯性矩相同,即 13 ii =,则力矩 1 m 为: 2 2 1 1 2 2 1 1 1 1 2 4 i l i l i l i l rl m + + = (6.2) 上横梁惯性距 1 i 为: 3 111 12 1 hbi = (6.3) 式中: 1 b 机架上横梁横截面的宽度,mmb160 1= ; 1 h 机架上横梁横截面的高度,mmh450 1= 。 43 1 001215 . 0 45 . 0 16 . 0 12 1 mi= 机架立柱上的惯性矩 2 i 为: 3 222 12 1 hbi = (6.4) 式中: 2 b 机架立柱横梁横截面的宽度,mmbb160 12 =; 2 h 机架上横梁横截面的高度,mmh240 2 =。 43 1 000184. 024. 016. 0 12 1 mi= 弯矩 1 m 为: 第 28 页 mn i l i l i l i l rl m= + + = + + =81.9958 000184. 0 205. 2 001215. 0 83. 0 000184. 0 205. 2 001215. 02 83. 0 4 83. 0325.493242 4 2 2 1 1 2 2 1 1 1 1 在立柱上的弯矩 2 m: mnm rl m= =0 .27681.9958 4 83. 0325.49324 4 1 1 2 (6.5) 在求出力矩 1 m 和 2 m后,可求出机架的应力,其应力图如图 6.4 所示: 图 6.4 机架应力图 机架横梁内侧的应力 1n 为: 1 1 1 n n w m = (6.6) 式中: 1n w 机架横梁内侧的断面系数。 3 1 11 1 0054 . 0 45 . 0 001215 . 0 22 m h i b i wn= = 第 29 页 mpampa w m b n n 2008217 . 1 0054 . 0 81.9958 1 1 1 = 机架横梁外侧的应力 1a 为: 1 1 1 a a w m = (6.7) 式中: 1a w 机架横梁外侧的断面系数。 3 1 11 1 0054 . 0 45 . 0 001215 . 0 22 m h i a i wn= = mpampa w m b a n 2008217 . 1 0054 . 0 81.9958 1 1 1 = 机架立柱内侧的应力 2n ,公式为: 2 2 2 2 2 n n w m f r += (6.8) 式中: 2n w 机架立柱内侧的断面系数; 2 f 机架立柱的断面面积, 2 222 0384 . 0 24 . 0 16 . 0 mhbf=。 3 2 22 2 00123. 0 24. 0 00184. 022 m h i d i wn= = mpampa w m f r b n n 2008666. 0 00123. 0 276 0384. 02 325.49324 2 2 2 2 2 =+ =+= 机架立柱外侧的应力 2a ,公式为: 2 2 2 2 2 a n w m f r = (6.9) 式中: 2a w 机架立柱外侧的断面系数; 3 2 22 2 00123. 0 24. 0 00184. 022 m h i c i wn= = mpampa w m f r b n a 2004179. 0 00123. 0 276 0384. 02 325.49324 2 2 2 2 2 = = 以上各部分应力均远小于机架的许用应力,因此机架满足强度要求。 第 30 页 6.3 机架的变形计算 机架的弹性变形时由横梁的弯曲变形和立柱的拉伸变形组成的。由于横梁的断面尺寸 较横梁的长度来说是较大的,在计算横梁的弯曲变形时,应考虑横向切力的影响,公式为: 3333 ffff+= (6.10) 式中: 3 f 机架的弹性变形; 3 f 由弯矩产生的横梁弯曲变形; 3 f由切应力产生的横梁弯曲变形; 3 f由拉力产生的横梁弯曲变形。 由弯矩产生的横梁弯曲变形 3 f 为: = 424 21 1 2 1 3 mrl ei l f (6.11) 式中:e机架材料的弹性模数,200gpa=e; 1 i 横梁的惯性矩; 1l 横梁中性轴的长度; r横梁上的作用力; 2 m 机架立柱中的力矩。 m mrl ei l f 6 9 2 21 1 2 1 3 10638 . 4 4 276 24 83 . 0 325.49324 001215 . 0 10200 83 . 0 424 = = = 由切应力产生的横梁弯曲变形 3 f为: 1 1 3 2 gf rl kf= (6.12) 式中:g机架材料的剪切弹性模数,80gpa=g; 1 f 横梁的断面面积, 2 111 072 . 0 45 . 0 16 . 0 mhbf=; k横梁的断面形状系数,对于矩形断面,系数k为 1.2. m gf rl kf 6 9 1 1 3 10264 . 4 072 . 0 10802 83 . 0 325.49324 2 . 1 2 = = 机架立柱的拉伸变形 3 f为: 第 31 页 2 2 3 2 ef rl f= (6.13) 式中: 2 l 立柱的中性轴长度; 2 f 立柱的断面面积; m ef rl f 6 9 2 2 3 10081 . 7 0384 . 0 102002 205 . 2 325.49324 2 = = ()mffff 66 3333 10983.1510081. 7264. 4638. 4 =+=+= 机架的允许变形 mmf5 . 0 3 =, 33 ff ,所以机架刚度足够。 第 32 页 7 轧辊与轧辊轴承设计 7.1 轧辊的设计 7.1.1 轧辊参数的选择 380h 平辊轧机为线材轧机,故 l/d 为:1.52.5.轧辊的参数选择列表如下表所示: 表 7.1 轧辊参数 轧辊材料 轧辊直径 (mm) 辊身长度 (mm) 辊颈直径 (mm) 辊颈长度 (mm) 梅花轴头直径 (mm) 梅花轴头长度 (mm) 镍钼球墨 铸铁 380 700 230 278 210 310 轧辊主要尺寸示意图如图 7.1 所示: 图 7.1 轧辊主要尺寸示意图 7.1.2 轧辊的强度校核 轧辊的损毁取决于各种应力(其中包括弯曲应力、扭转应力、接触应力,由于温度分度不均匀 或者交替变化引起的温度应力以及轧辊制动过程中形成的残余应力等)的综合影响。由于线 材轧机的轧辊辊身上布置有许多孔型和轧槽。因此,轧辊的轧制力可看成集中力。因为轧件在不同轧 槽中轧制时,外力的作用点总是变动的。所以要分别判断不同轧槽过钢时轧辊各断面的应力,进行比 较,找出危险断面。 通常对辊身只计算弯曲,对辊颈则计算弯曲和扭转,对传动轴头只计算扭转。辊颈强 度要按照弯扭合成应力来计算。 以下轧辊为例,其受力图、弯矩(m)图、扭矩(t)图如图 7.2 所示: 第 33 页 图 7.2 下轧辊受力、弯矩、扭矩图 将轧辊简化成两端支撑的简支梁,所以, 根据图 7.2 得到: 49324.325n 2 rr 21 = p 1、辊身强度校核: 作用于轧辊危险断面上的弯矩 d m 为: arm d1 2 1 = (7.1) 式中:a压下螺丝中心线距离,mma1060=。 mnarmd=89.2614106 . 1 325.49324 2 1 2 1 1 作用于轧辊危险断面上的弯矩应力 d 为: 3 d d d d d 32 m w m = (7.2) 第 34 页 式中: d m 辊身危险断面处的弯矩,nm; d轧辊断面处的直径,d=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京知识产权师培训班课件
- 2025年第一季度护理管理制度考核试题考题答案
- 营养专科护士培训考试题及答案
- 医院传染病防控知识培训考核试题(附答案)
- 护理导论知识练习测试题(含答案)
- 2024年上海市浦东新区高桥镇新益村社区工作人员考试模拟试题及答案
- 北京房屋测绘培训课件
- 2025年注册会计师重点试题带答案
- 标日课件第九课
- 北京公共知识培训总结课件
- DB32T 4073-2021 建筑施工承插型盘扣式钢管支架安全技术规程
- NOYAH诺雅品牌介绍
- 易制毒、易制爆培训试卷及答案
- 入行论94课第1个颂词
- 华西二院妇产科进修总结
- fog-106单轴光纤陀螺仪技术协议
- 全国学校艺术教育总体规划1989~2000年
- GB∕T 10715-2021 带传动 多楔带、联组V带及包括宽V带、六角带在内的单根V带 抗静电带的导电性:要求和试验方法
- 药学英语词汇汇总
- 吉利集团绩效管理创新与实践
- 超大跨径桥梁结构健康监测关键技术
评论
0/150
提交评论