




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
影响gdp增长的经济因素分析 近年来,我国gdp逐年增长,经济发展速度令人瞩目。为更好的了解我国经济增长的原因,我组对影响我国gdp增长的经济因素进行了分析。下表(表1.1)提供了我国19782002年的gdp及其主要影响因素的数据。其中y=gdp(亿元);x1能源消费总量(万吨标准煤);x2就业人员(万人);x3=居民消费水平(元);x4农业总产值(亿元);x5社会消费品零售总额(亿元);x6进出口贸易总额(亿元)obsx1x2x3x4x5x6y1978571444015218413971558.63553624.1197958588410241971697.61800454.64038.2198060275423612361922.621405704517.8198159447437252492180.622350735.34862.4198262067452952662483.262570771.35294.71983660404643628927502849.4860.15934.5198470904481973273214.133376.412017171198576682498734373619.4943052066.78964.4198680850512824474013.0149502850.410202.2198786632527835084675.758203084.211962.5198892997543346355865.277440382214928.3198996934553297626534.738101.44155.916909.2199098703567408037662.098300.15560.118547.91991103783583608968157.039415.67229.321617.819921091705943210709084.710993.79119.626638.1199311599360220133110995.512462.11127134634.4199412273761470174615750.516264.720381.946759.4199513117662388223620340.92062023499.958478.1199613894868850264122353.724774.124133.867884.6199713817369600283423788.427298.926967.274462.6199813221470637297224541.929152.526849.778345.2199913011971394313824519.131134.729896.282067.5200013029772085339732917.9334152.639273.289468.1200113491473025360937213.4937595.242183.697314.8200214822273740379143499.9140910.551378.2104790.6一:现估计模型为y=a0+a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+u 运用ols估计方法对上式中得参数进行估计,利用eviews软件得回归分析结果如下:(表1.2)dependent variable: ymethod: least squaresdate: 06/03/05 time: 20:44sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c5421.2153244.8561.6707100.1121x10.0509330.0302151.6857080.1091x2-0.2244280.113375-1.9795160.0633x321.183872.08494110.160420.0000x4-0.2165350.203877-1.0620840.3022x50.4884900.3118031.5666650.1346x60.3366200.1392082.4181020.0264r-squared0.999725 mean dependent var35976.74adjusted r-squared0.999634 s.d. dependent var34444.88s.e. of regression658.9930 akaike info criterion16.05080sum squared resid7816893. schwarz criterion16.39208log likelihood-193.6350 f-statistic10925.17durbin-watson stat1.748019 prob(f-statistic)0.000000分析回归结果:从经济意义上讲,就业人口x2的系数为负,可初步认为国民经济在向技术密集型、资本密集型发展。农业总产值的系数为负,不符合实际经济意义。其余解释变量的系数为正,符合实际经济现象。从模型检验上讲,拟合较好。可决系数r(2)=0.999725,f统计量为10925.172.66=f0.05(6,18)表明模型在整体上拟合非常好;系数显著性检验:对于a0,t统计量为1.670710,给定0.05 查t分布表,在自由度为n-k=18下,得临界值t0.025(18)=2.101因为tt0.025(18),所以接受h0:a0=0的原假设。对于a1、a2、a3、a4、a5、a6,除去a3、a6的t统计量大于t0.025(18)之外,其余系数的t统计量均小于t0.025(18) ,因此可初步认为模型存在严重的多重共线性。现重新估计模型为y=a1x1+a2x2+a3x3+a4x4+a5x5+a6x6得回归结果如下(表1.3):dependent variable: ymethod: least squaresdate: 06/03/05 time: 20:57sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. x10.0106560.0190530.5592690.5825x2-0.0412480.030184-1.3665640.1877x322.689741.96667011.537140.0000x4-0.1400060.207819-0.6736920.5086x50.1460230.2457790.5941240.5594x60.3871080.1421502.7232410.0135r-squared0.999683 mean dependent var35976.74adjusted r-squared0.999599 s.d. dependent var34444.88s.e. of regression689.3576 akaike info criterion16.11496sum squared resid9029064. schwarz criterion16.40749log likelihood-195.4370 durbin-watson stat1.704338从模型检验上看,r(2)=0.999683小于第一次模型的可决系数;t检验也并不优于第一次模型的t检验,故仍采用第一次模型。二、多重共线性检验 1、检验:利用eviews计算线性回归模型中,六个解释变量的如下简单相关系数矩阵(表2.1.1):x1x2x3x4x5x6x110.9784543274310.920854078840.8881671741190.9111188771040.883472715462x20.97845432743110.9488157613280.9171258679460.9460360865940.909232951166x30.920854078840.94881576132810.9827864539390.9970082872950.982361794167x40.8881671741190.9171258679460.98278645393910.9907093117320.997396156937x50.9111188771040.9460360865940.9970082872950.99070931173210.98844222336x60.8834727154620.9092329511660.9823617941670.9973961569370.988442223361从上表可以看出,各解释变量之间存在高度线性相关。同时由表1.2又可看出,尽管整体上线性回归拟合较好,但x1 x2 x4 x5 变量的参数t值并不显著,表明模型中解释变量确实存在严重的多重共线性。2、修正:运用ols方法逐一求出y对各个解释变量的回归,分别如下:y=-67070.34+1.029232x1 (式2.1.1) (9781.140) (0.093575)t=(-6.856618) (10.99902) r(2)=0.840254 se=14063.12 f=120.9784y=-133299.7+2.962005x2 (式2.1.2) (12588.50) (0.212476)t=(-10.58901) (13.68286)r(2)=0.890591 se=11638.38 f=187.2206y=-2268.943+27.31756x3 (式2.1.3) (348.7497) (0.186822)t=(-6.505936) (146.2225)r(2)=0.998925 se=1153.406 f=21381.06y=617.7713+2.752282x4 (式2.1.4) (1669.79)(0.094620)t=(0.369969) (29.08787)r(2)=0.973536 se=5723.931 f=846.1039y=-1873.193+2.700977x5 (式2.1.5) (712.2024) (0.037971) t=(-2.630142) (71.13173)r(2)=0.995475 se=2366.912 f=5059.723y=5875.266+2.222034x6 (式2.1.6) (1531.230) (0.075790)t=(3.836958)(29.31845)r(2)=0.973940 se=5680.092 f=859.5713综合分析可见,在七个一元回归模型中,gdp(y)对居民消费水平(x3)线性关系强,拟合程度好。(2)将其余解释变量逐一带入对x3的一元线性回归方程中,得以下几个模型:y=-387.7386-0.027368x1+27.93105x3 (式2.2.1) (1367.242) (0.019261) (0.468871)t=(-0.283592) (-1.420886) (59.57089)r(2)=0.998926 se=1128.676 f=11165.14y=6262.980+0.029858x1-0.232206x2+28.56686x3 (式2.2.2) (3643.674) (0.034485) (0.119009) (0.548771)t=(1.718864) (0.865831) (-1.951160) (52.05602)r(2)=0.999048 se=1062.902 f=8394.415y=4027.197+0.032089x1-0.181952x2+24.94421x3+0.327880x4 (式2.2.3) (2612.367) (0.024319) (0.084582) (0.860040) (0.069519)t=(1.541590) (1.319521) (-2.151190) (29.00354) (4.716419)r(2)=0.999606 se=749.4065 f=12670.52y=7124.543+0.061735x1-0.295985x2+22.25771x3+0.173648x4+0.442008x5 (式2.2.4)(3548.587)(0.033478) (0.122613) (2.282200) (0.13910) (0.348654)t=(2.007713)(1.844017) (-2.413968) (9.753743) (1.243811) (1.267755)r(2)=0.999541 se=738.2831 f=10444.48y=5421.215+0.050933x1-0.224428x2+21.18387x3-0.216535x4+0.488490x5+0.336620x6 (式2.2.5) (3244.856)(0.030215)(0.113375)(2.084941)(0.203877)(0.311803)(0.139208)t=(1.670710)(1.685708)(-1.979516)(10.16042)(-1.062084)(1.566665)(2.418102)r(2)=0.999634 se=658.9930 f=10925.17从式(2.2.1)可以看出,解释变量x1与x2之间存在共线性。又因为x2对y的经济意义影响低于x1,故舍去x2。从式(2.2.4)(2.2.5)看出,解释变量x4 x5对y的影响并不显著,故将x4 x5撤去得如下模型(表2.2.1):dependent variable: ymethod: least squaresdate: 06/03/05 time: 22:06sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c-903.4074829.1531-1.0895540.2883x1-0.0052610.012145-0.4332060.6693x323.633610.74070231.907060.0000x60.3188140.0507836.2779440.0000r-squared0.999658 mean dependent var35976.74adjusted r-squared0.999609 s.d. dependent var34444.88s.e. of regression681.1097 akaike info criterion16.03097sum squared resid9742120. schwarz criterion16.22599log likelihood-196.3871 f-statistic20452.98durbin-watson stat1.631881 prob(f-statistic)0.000000表2.2.1中能源消费总量x1的系数为负,不符合实际经济意义,现舍去1978至1982年的数据,重新回归如下:(表2.2.2)dependent variable: ymethod: least squaresdate: 06/03/05 time: 22:10sample: 1983 2002included observations: 20variablecoefficientstd. errort-statisticprob. c-1797.3341438.251-1.2496660.2294x10.0047770.0183430.2604470.7978x323.500090.84188027.913820.0000x60.3173670.0564105.6260570.0000r-squared0.999589 mean dependent var43854.06adjusted r-squared0.999512 s.d. dependent var34234.35s.e. of regression756.2503 akaike info criterion16.27148sum squared resid9150632. schwarz criterion16.47062log likelihood-158.7148 f-statistic12973.20durbin-watson stat1.689291 prob(f-statistic)0.000000经过上述逐步回归分析,表明y对x1 x3 x6的回归模型最优。三、异方差性检验1、检验(1)、goldfeldquandt检验用ols方法求得下列结果:y=-12754.36+0.236669x1+10.96853x3-0.395909x6 (19831989) (6250.887) (0.1134474) (3.689418) (0.767691)r(2)=0.994022 e1(2)=287719.1y=-5129.215+0.035047x1+23.39430x3+0.304576x6 (19942002) (7786.425)(0.065303)(1.268709)(0.079944)r(2)=0.996966 e2(2)=5139285求f统计量: f=e2(2)/e1(2)=17.86216139给定显著性水平=0.05,得临界值f0.05(4,4)=4.28,比较f=17.86216139 f0.05(4,4)=6.39可初步认为不存在异方差。(2)、arch检验利用eviews软件输出结果为(表3.1.1)dependent variable: e2method: least squaresdate: 06/03/05 time: 23:01sample(adjusted): 1986 2002included observations: 17 after adjusting endpointsvariablecoefficientstd. errort-statisticprob. c602213.2337049.71.7867190.0973e2(-1)-0.2996770.304742-0.9833800.3434e2(-2)0.0872030.2895280.3011880.7680e2(-3)-0.0050350.542470-0.0092820.9927r-squared0.115727 mean dependent var495758.6adjusted r-squared-0.088335 s.d. dependent var699258.1s.e. of regression729489.3 akaike info criterion30.04040sum squared resid6.92e+12 schwarz criterion30.23645log likelihood-251.3434 f-statistic0.567116durbin-watson stat1.948353 prob(f-statistic)0.646348丛输出的辅助回归函数重的r(2)计算(n-p)*r(2)=17*0.115727=1.967359,查(2)分布表给定=0.05得临界值(2)0.05(3)=7.81因为(n-p)*r(2)=17*0.115727=1.967359(2)0.05(3)=7.81所以拒绝h0,表明不存在异方差。四、自相关检验1、检验(1)、图示法由表2.2.2的ols估计可直接得到残差resid,生成序列e,输出结果如下图:由此图可以看出,残差et不成线性自回归,可初步认为随机误差ut不存在自相关。(2)dw检验根据表2.2.2估计的结果,dw=1.689291.给定显著性水平=0.05,查dw表n=20,k=3得下限临界值dl=0.998上限临界值du=1.676因为dudw统计量=1.6892914-du,表明不存在自相关。五、运用阿尔蒙法进行滞后性修正1,对y ,x1估计如下有限分布滞后模型y=a0+b0x1+b1x1(-1)+b2x1(-2)+b3x1(-3)应用eviews软件得回归分析结果如下:dependent variable: ymethod: least squaresdate: 06/04/05 time: 23:27sample: 1983 2002included observations: 20variablecoefficientstd. errort-statisticprob. c-78223.1710398.98-7.5221950.0000pdl01-0.9142960.400006-2.2857050.0362pdl02-0.8282240.410601-2.0170990.0608pdl031.0872860.3888242.7963490.0129r-squared0.935158mean dependent var43854.06adjusted r-squared0.923001s.d. dependent var34234.35s.e. of regression9499.609akaike info criterion21.33275sum squared resid1.44e+09schwarz criterion21.53189log likelihood-209.3275f-statistic76.91841durbin-watson stat0.481394prob(f-statistic)0.000000 lag distribution of x1icoefficientstd. errort-statistic . * |0 1.00121 0.44552 2.24728 * . |1-0.91430 0.40001-2.28570 * . |2-0.65523 0.39089-1.67625 . *|3 1.77840 0.45803 3.88274sum of lags 1.21009 0.08629 14.0238即是y-78223.17+1.00121x10.91430x1(-1) -0.65523x1(-2)+ 1.77840x1(-3)2对y ,x3有限分布滞后模型y=a0+b0x3+b1x3(-1)+b2x3(-2)+b3x3(-3)用eviews软件显示回归分如下:dependent variable: ymethod: least squaresdate: 06/04/05 time: 23:31sample: 1983 2002included observations: 20variablecoefficientstd. errort-statisticprob. c-2497.770516.2504-4.8382920.0002pdl012.1069172.1767250.9679300.3475pdl02-15.958292.156581-7.3998110.0000pdl038.5508662.1502223.9767370.0011r-squared0.998874mean dependent var43854.06adjusted r-squared0.998663s.d. dependent var34234.35s.e. of regression1251.806akaike info criterion17.27942sum squared resid25072277schwarz criterion17.47856log likelihood-168.7942f-statistic4731.442durbin-watson stat1.165284prob(f-statistic)0.000000 lag distribution of x3icoefficientstd. errort-statistic . *|0 26.6161 2.22221 11.9773 .* |1 2.10692 2.17672 0.96793 * . |2-5.30051 2.11824-2.50232 . * |3 4.39380 2.45928 1.78662sum of lags 27.8163 0.33326 83.4682即是y-2497.770+26.6161 x3+2.10692 x3 (-1) -5.30051 x3 (-2)+ 4.39380 x3 (-3)3对y , x6有限分布滞后模型y=a0+b0 x6+b1 x6 (-1)+b2 x6 (-2)+b3 x6 (-3)用eviews软件显示回归分如下:dependent variable: ymethod: least squaresdate: 06/04/05 time: 23:37sample: 1983 2002included observations: 20variablecoefficientstd. errort-statisticprob. c8207.6061631.5105.0306800.0001pdl010.7740280.3432472.2550150.0385pdl02-0.0758520.363485-0.2086800.8373pdl03-0.0649750.330846-0.1963910.8468r-squared0.983441mean dependent var43854.06adjusted r-squared0.980336s.d. dependent var34234.35s.e. of regression4800.586akaike info criterion19.96772sum squared resid3.69e+08schwarz criterion20.16687log likelihood-195.6772f-statistic316.7499durbin-watson stat0.342226prob(f-statistic)0.000000 lag distribution of x6icoefficientstd. errort-statistic . *|0 0.78491 0.39271 1.99867 . *|1 0.77403 0.34325 2.25501 . * |2 0.63320 0.34422 1.83951 . * |3 0.36242 0.46095 0.78625sum of lags 2.55456 0.14135 18.0730即是y=8207.606+0.78491 x6+0.77403 x6 (-1)+ 0.63320 x6 (-2)+ 0.36242 x6 (-3)通过以上一系列统计检验可以说明:我国gdp的增长与能源消费总量x1,居民消费水平x3,进出口贸易总额x6有很高的相关性。其中,又以居民消费水平x3的影响程度最为显著。由此可以看出影响我国gdp的主要因素是居民消费水平,进出口贸易总额,能源消费总量。附本(相关表格)(表2.1.2)dependent variable: ymethod: least squaresdate: 06/03/05 time: 21:08sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c-67070.349781.840-6.8566180.0000x11.0292320.09357510.999020.0000r-squared0.840254 mean dependent var35976.74adjusted r-squared0.833308 s.d. dependent var34444.88s.e. of regression14063.12 akaike info criterion22.01712sum squared resid4.55e+09 schwarz criterion22.11463log likelihood-273.2140 f-statistic120.9784durbin-watson stat0.094594 prob(f-statistic)0.000000(表2.1.3)dependent variable: ymethod: least squaresdate: 06/03/05 time: 21:12sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c-133299.712588.50-10.589010.0000x22.9620050.21647613.682860.0000r-squared0.890591 mean dependent var35976.74adjusted r-squared0.885834 s.d. dependent var34444.88s.e. of regression11638.38 akaike info criterion21.63862sum squared resid3.12e+09 schwarz criterion21.73613log likelihood-268.4828 f-statistic187.2206durbin-watson stat0.159690 prob(f-statistic)0.000000(表2。1.4)dependent variable: ymethod: least squaresdate: 06/03/05 time: 21:15sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c-2268.943348.7497-6.5059360.0000x327.317560.186822146.22260.0000r-squared0.998925 mean dependent var35976.74adjusted r-squared0.998879 s.d. dependent var34444.88s.e. of regression1153.406 akaike info criterion17.01544sum squared resid30597948 schwarz criterion17.11295log likelihood-210.6931 f-statistic21381.06durbin-watson stat0.841840 prob(f-statistic)0.000000(表2.1.5)dependent variable: ymethod: least squaresdate: 06/03/05 time: 21:17sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c617.77131669.7900.3699690.7148x42.7522820.09462029.087870.0000r-squared0.973536 mean dependent var35976.74adjusted r-squared0.972385 s.d. dependent var34444.88s.e. of regression5723.931 akaike info criterion20.21932sum squared resid7.54e+08 schwarz criterion20.31683log likelihood-250.7415 f-statistic846.1039durbin-watson stat0.557749 prob(f-statistic)0.000000( 表2.1.6)dependent variable: ymethod: least squaresdate: 06/03/05 time: 21:21sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c-1873.193712.2024-2.6301420.0150x52.7009770.03797171.131730.0000r-squared0.995475 mean dependent var35976.74adjusted r-squared0.995278 s.d. dependent var34444.88s.e. of regression2366.912 akaike info criterion18.45318sum squared resid1.29e+08 schwarz criterion18.55069log likelihood-228.6647 f-statistic5059.723durbin-watson stat0.288053 prob(f-statistic)0.000000(表2.1.7)dependent variable: ymethod: least squaresdate: 06/03/05 time: 21:23sample: 1978 2002included observations: 25variablecoefficientstd. errort-statisticprob. c5875.2661531.2303.8369580.0008x62.2220340.07579029.318450.0000r-squared0.973940 mean dependent var35976.74adjusted r-squared0.972807 s.d. dependent var34444.88s.e. of regression5680.092 akaike info criterion20.20394sum squared resid7.42e+08 schwarz criterion20.30145log likelihood-250.5493 f-statistic859.5713durbin-watson stat0.739809 prob(f-statistic)0.000000(表2.2.1)dependent variable
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年八年级上学期期末考试英语试卷及答案(共五套)
- 婚礼策划自我介绍
- 奔腾年代介绍和感悟
- 帮扶人业务知识培训课件
- 企业培训在线学习平台及课程资料包
- 新疆戒毒面试题目及答案
- 2025秋开学典礼纪念抗日战争胜利80周年教师代表讲话稿:影像见证真相逐光而行启新程
- 眼科医院消毒供应室
- 2025年人力资源管理手册招聘与选拔面试模拟题及答题技巧详解
- 2025年电力电子技术考试模拟题集及解析
- 2025年华住储备干部考试题库
- 安徽省蚌埠市2024-2025学年七年级下学期期末考试英语试卷(含答案无听力原文及音频)
- 高速公路收费员安全教育培训
- 枫桥经验培训课件
- 甘肃农业职业技术学院招聘事业编制笔试真题2024
- GB/T 45817-2025消费品质量分级陶瓷砖
- 2025-2030中国超级电容器电解液行业发展状况与需求前景预测报告
- 羽毛球馆创业计划书范文
- 专题:阅读理解 六年级英语下册期末复习考点培优专项鲁教版(五四学制)(含答案解析)
- 信息部年度总结汇报
- 通风设施构筑工安全知识题库
评论
0/150
提交评论