




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
journal of statistical physics, vol. 123, no. 1, april 2006 ( c?2006) doi: 10.1007/s10955-005-9012-8 around multicolour disordered lattice gas azzouz dermoune1and servet martinez2 received june 23, 2005; accepted november 22, 2005 published online: april 5, 2006 weconsiderasystemofmulticolourdisorderedlatticegas,followingcloselythe(mono- colour) introduced by faggionato and martinelli(3,4). we study the projection on the monocoloursystemandwederiveanestimateoftheclosenessbetweengrandcanonical and canonical gibbs measures. key words: multicolour, gibbs measure, lattice gas. ams classifi cation: primary: 60k35, 82c20, 82c22 1. introduction faggionato and martinelli(3,4)have studied the hydrodynamic limit for a dynamics on lattice gas which depends on a collection of real bounded i.i.d. random variables = (x: x zd) corresponding to some external quenched disorder fi eld. the hydrodynamic limit was obtained for a monocolour particles, an important byproduct of their study being the equivalence of ensembles shown in lemma a.4.(4) the aim of our work is to give an equivalence of ensembles result with sharp bounds for multicolour particles. our proof uses the projection on the monocolour system, and then the equivalence of ensembles result of the monocolour lattice gas.(3)after, we study the variation of the canonical gibbs measures of the mul- ticolour problem with respect to the monocolour one, showing that it does not add new terms. this is done by elementary computations. we point out that the 1universit e de lille i, umr-cnrs 8524, laboratoire paul painlev e, universit e des sciences et tech- nologies de lille, 59655 villeneuve dascq, cedex, france; e-mail: azzouz.dermounemath.univ- lille1.fr 2universidad de chile, departamento ingenier a matem atica-centro modelamiento matem atico, umr2071 cnrs-uchile, casilla 170 - 3, correo 3, santiago, chile; e-mail: smartinedim. uchile.cl 181 0022-4715/06/0400-0181/0c?2006 springer science+business media, inc. 182dermoune and martinez equivalence of ensembles of multicolour is an important step towards obtaining the hydrodynamic limit for the multicolour case. on the other hand, as it is shown in ref. 5, the hydrodynamic limit for the multicolour case is necessary to obtain propagation of chaos. the model introduced in refs. 3 and 4 has been previously extended to the two colours in refs. 1 and 2 and an equivalence of ensembles result was proven by using similar techniques as those in ref. 3 which are different from ours. let us introduce the problem. ? zd denotes a fi nite set of sites, each of the sites could be empty or has a colour (or spin). the fi nite set of colours is denoted by i and it is useful to consider the set i0= i 0, where we have added the value 0 that expresses that the site has no colour (or that it is empty). we denote |i| = 1(i i)fori i0(whereweput1(x a)=1if x a,vanishingotherwise). the set of confi gurations is i? 0 , and its elements are denoted by = (x: x ?). for each x ? x= ? iif there is a particle with colour i i at x 0if there is no particle at x we will use the notation | := (|x| : x ?) 0,1?. 1.1. gibbs measures for monocolour lattice gas let r and the disorder be fi xed. the gibbs measure | := ,or the monocolour problem is a probability measure on 0,1?characterized by: all the projections x,x ? are independent |() := |( : =) = ? x? |( : x=x)for 0,1?;(1.1) and the marginals verify |( : x= 1) = e+x 1 + e+x .(1.2) the measure | is symmetric and invariant for the dynamics studied in break refs. 3 and 4. briefl y this dynamics is given by the following rate of change c x,x+e() = fe(x,x,x+e,x+e) for 0,1 ? and x,x + e ?. here e is anelementofasymmetricneighbourhood? oftheoriginandthefunctions( fe: e ?) verify the conditions specifi ed in ref. 4 (symmetry, exclusion, lower uniform boundedness and detailed balance). for 0,1?put = x ? : x= 1 and we denote by n() = | the number of elements of (that is, |a| denotes the cardinality of a). observe that for each 0 0 : i i) be fi xed with ? ii ni= n. recall ni() = |x : x= i|. let (ni= ni: i i) = i? 0 : ni() = ni,i i. the canonical gibbs measure for the multicolour lattice gas is the following conditional measure on i? 0 : () = ( | ni= ni: i i). before giving our main result we need the following background. for i? 0 and ? ? put ?= (x: x ?). let g : i? 0 r. the function g depends on ? if for any couple ,? i? 0 such that ?= ?, it holds g() = g(?). this is equivalent tothe existence ofa function g?: i? 0 rsuch that g() = g?(?).if gdepends on?1andon?2,thenitiseasytoshowthatgdepends on?1 ?2.let d(g) = ? ? : g depends on ?, and put ?(g) = ?d(g)?. then g depends on ?(g) and this set is the smallest one verifying this property and we call it the support of g. so, ?(g)= ?(g)implies g() = g(?) and by abuse of notation we put g() = g(?(g). lemma 1.1.let be a gibbs measure. then for every g : i? 0 r it holds ?(s(g) ?(g) and |s(g)| |g|. proof:from s(g)() = ? :|=g() () the inequality between the norms |is direct. let us show the inclusion of the supports. observe that = p for all 0,1? , for a fi xed probability vector p = (pi: i i) p(i). put around multicolour disordered lattice gas185 ? = ?(g) and partition = (?,?), = (?,?). since pis a product measure and g() = g(?) we have s(g)() = ? ?:|?|=? g(?)? p (?) ? ?:|?|=? ? p (?) = ? ?:|?|=? g(?)? p (?) . therefore s(g)() only depends on ?, and the result is shown.? now we can announce our main result. theorem 1.2.let p = (pi: i i) with pi= ni/n,i i, be a gibbs measure such that = p, and |(n) = n. suppose that minni: i i := (n) 1 for every n. then, for any l 1 fi xed, there exists constant c = c(|i|, l) such that for all g : i? 0 r verifying |?(g)| (n)/l it holds |(s(g) (g) | c|g| |?(g)| (n) .(1.6) more precisely |(s(g) (g) | c|g| (n) ? 0,1?:n()=n ?|?(g) |?|( |n = n) (1.7) in particular, we get that, in the framework of the theorem, there exists a constant d = d(|i|, l) such that |(s(g) (g)| d |g|?(g)| (n) (1.8) from (1.3), (g) = |(s(g). we deduce (g) (g) = |(s(g) |(s(g) + |(s(g) (g).(1.9) now, lemma 1.1. gives the inclusion ?(s(g) ?(g). then, from lemma a.4 in ref. 4, we get that: for any (0,1) and any g with support ?(g) ? and such that |?(g)| |?|1, for large ? it holds |(s(g) |(s(g) c |g| |?(g)| |?| .(1.10) therefore, by combining theorem 1.2 with (1.8), (1.9) and (1.10), we get the following result. 186dermoune and martinez corollary 1.3.let p = (pi: i i) with pi= ni/n, i i, and a gibbs measure such that = p. suppose that there exists 0 such that minni: i i n for every n. then, for any (0,1) there exists constant c?= c?(|i|,) such that for all g : i? 0 r verifying |?(g)| n1it holds |(g) (g)| c?|g|?(g)| n .(1.12) the rest of this paper is consecrated to the proof of theorem 1.2. we point out that the main technical point is the control of |(sg) (g). from (2.1) and (2.3) below, we are led to study a quotient that is dominated by the usual entropy estimates, see the proof of lemma 2.6. 2. proof of the main result let be a gibbs measure for the multicolour lattice gas. recall that the monocolour canonical gibbs measure is defi ned on 0,1?by |() = |( | n = n) , so |() = 1(n() = n) |() |(n=n) for 0,1?. therefore, |( f ) |( f ) = ? 0,1? f ()|() ? 1 1(n() = n) |(n = n) ? for f : 0,1? r . the canonical gibbs measure for the multicolour lattice gas is defi ned on i? 0 by () = ( | ni= ni: i i). hence, (g) = ? i? 0 g()()1(ni() = ni : i i) (ni= ni: i i) forg : i? 0 r , so, (g) (g) = ? i? 0 g()() ? 1 1(ni() = ni: i i) (ni= ni: i i) ? . let us fi rst establish some general relations which do not depend on the fact that p verifi es the requirements of the theorem. the hypothesis on p will be only used at the end of the proof, in lemma 2.3. we have |(s(g) = ? 0,1? ? :|= g()() 1(n() = n) |(n = n) |() . around multicolour disordered lattice gas187 since i? 0 : ni= ni,i i i? 0 : n(|) = n and ( : n(|) = n) = |( : n() = n), we deduce (g) = ? 0,1? ? :|= g()() 1(ni() = ni: i i) (ni= ni,i i | n = n) 1(n() = n) |(n = n) |(). therefore |(s(g) (g) = ? 0,1?:n()=n ?g 1() ? g 2() ? |( | n = n) ,(2.1) where ?g 1() = ? :|= g()()and?g 2() = ? :|=,ni()=ni,ii g() () (ni= ni,i i | n = n) . from now on, we fi x = pwith p = (pi: i i) a probability vector in i. since for every i? 0 such that ni() = nifor i i, it holds () = ? ii pni i , we get ?g 2() = ? ii pni i (ni= ni,i i | n = n) ? :|=,ni()=ni,ii g() . let ? n ni,ii ? = n! ? iini!. we have (ni= ni,i i | n = n) = ? n ni,i i ? ii pni i , so, ? ii pni i (ni= ni,i i | n = n) = ? n ni, i i ?1 . then, ?g 2() = ? :|=,ni()=ni,ii g()()with() = ? n ni, i i ?1 . in the sequel, for every 0,1?with n() = n we put ?= ?(g) and = ?(g). then = ? is a partition. every i? 0 with | = can 188dermoune and martinez be represented by = (?,). in fact in the complement we have x= 0 for x ? . with this notation and since g() = g(?(g), we obtain g() = g(?) for every i? 0 with | = . then, by using pis a product measure we get ?g 1() = ? :|= g()p() = ? ?i? ? i g(?) ?(g) p (?) ?(g) p () = ? ?i? g(?) ?(g) p (?) . in a similar way, we fi nd ?g 2() = ? ?i? g(?) ? i:ni()=nini(?), ii ? n ni, i i ?1 = ? ?i? g(?) ? n |?| ni ni(?),i i ? n ni, i i ?1 . then, ?g 1()? g 2() = ? ?i? g(?) ? ?(g) p (?) ? n |?| ni ni(?),i i ? ? n ni, i i ?1? (2.2) and we obtain, |?g 1() ? g 2()| |g|m with(2.3) m= ? ?i? ? ? ? ? ? ?(g) p (?) ? n |?| ni ni(?),i i ? n ni, i i ?1? ? ? ? . we observe that m= |q r|is the total variation of two probability mea- sures q and r defi ned on i?by q(?) = ?(g) p (?) and r(?) = ? n |?| ni ni(?),i i ? n ni, i i ?1 . around multicolour disordered lattice gas189 therefore, m= 2 ? ?i?: r(?)q(?) (r(?) q(?) . letusdenote?= |?|andj= ?l = (li: i i) ni: li 0 for i i, ? iili = ?. to every ?we associate?l(?) = (li: i i) jwith li= ni(?) = |x ?: x= i|. we observe that q(?) = q(?l(?) and r(?) = r(?l(? ). then, by defi ning q(?l) = ? ii pli i and r(?l) = ? n ? ni li,i i ? n ni, i i ?1 (2.4) we fi nd, m= 2 ? ?lj: r(?l)q(?l) q(?l) ? r(?l) q(?l) 1 ? .(2.5) the proof of the theorem 1.2 will be deduced from the following result. lemma 2.3.let p = (pi: i i) with pi= ni/n,i i. assume that minni: i i := (n) 1, and |?(g)| l1(n) for some l 1. then m e? () ? 1 ? (n) ?|i|/2 1(2.7) where ?(?) = ? 11n(n ?) (2.8) proof: from relation (2.5) it suffi ces to show that max ? r(?l) q(?l) :?l j ? e? () ? 1 ? (n) ?|i|/2 .(2.9) from (2.4) we have r(?l) q(?l) = n?(n ?)! ? ii ni! n! ? ii ?(n i li)!n li i ? . (2.10) 190dermoune and martinez by using the stirling formula m! = em(logm1)(2m)1/2e(m)with 1 12m + 1 (m) 1 12m , we fi nd, r(?l) q(?l) = z(?l)eh(? l)e?(?l) , where z(?l) = ?(n ? ) ? ii ni n ? ii(ni li) ?1/2 = ? 1 ? n ?1/2 ? ii ? 1 li ni ?1/2 , ?(?l) = (n ?) (n) + ? ii (ni) (ni li) , h(?l) = ?log n + (n ?)(log(n ?) 1) n(log n 1) + ? ii (ni(log ni 1) (ni li)(log(ni li) 1) lilog ni). then, h(?l) = (n ?)log(1 ? n) ? ii(ni li)log(1 li ni). let us consider the maximization problem max ? h(?l) :?l ?p(i) ? where ?p(i) = ?l ri +: li 0,i i, ? ii li= ?. it is easy to show that the maximum is attained at li/ni= a constant, then by the constraints ? iili = ? we fi nd that li/ni= ?/n for all i i, and at this point h(?l) = 0. since j ?p(i), we deduce max ? h(?l) :?l j ? 0. on the one hand from min(ni: i i) (n) and li ?, we have ? ii ? 1 li ni ?1/2 (1 ? (n) |i|/2 then z(?l) (1 ? (n) |i|/2. a simple computation shows that (n ?) (n) 1 12(n ?) 1 12n + 1 = 1 + 12? 12(n ?)(12n + 1) 13? 144(n ?)n ? 11(n ?)n on the other hand for all i,(ni) (ni li) = 0 for li= 0, and for li 1, (ni) (ni li) 12li+ 1 12ni(12(ni li) + 1) 0. around multicolour disordered lattice gas191 from the latter estimates we get ?(?l) ? 11n(n ?) = ?(?) . this shows (2.9), and the lemma follows.? let us fi nish the proof of theorem 1.2. from relations (2.1), (2.3) and (2.7), and by using the hypothesis of the theorem, we obtain |(s(g) (g)| ? 0,1?:n()=n |g|m|( | n = n) |g| ? 0,1?:n()=n ? e? () ? 1 ? (n) ?|i|/2 1 ? |( | n = n) . from |?(g)| l1(n) and (n) n we have ? l1n. below we use (1 x)1 1 + hx when 0 x (h 1)/h, to deduce that ?(?) (2l 1)? 11(l 1)n2 . from the inequality ? l1(n),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专业技术人员继续教育公需科目考试题库及答案
- 2025年心理健康心理评估与辅导真题演练答案及解析
- 2025年护士节护理知识竞赛试题(附答案)
- 基于人工智能的2025年高速公路智能交通系统管理优化策略报告
- 2025年空乘人员专业测试题库及答案
- 2025年发热的门诊设置管理规范考核试题及答案
- 2025年防灾减灾知识竞赛题库附答案
- 2025年计算机专业基础知识试题及答案
- 2025年护士资格考试必考基础知识复习题库及答案
- 2025年国家GCP培训考试题库及完整答案【全优】
- 商铺意向金协议书
- (高清版)DB13∕T 5817-2023 河流(湖泊)健康评价技术规范
- 装饰装修工程施工方案
- 达人合作协议书范本
- 《乳腺癌的护理查房》课件
- 学校教职工网络安全培训
- 伊利企业文化手册
- 资产评估风险管理制度
- 电力工程项目管理的职责分工
- 餐饮库房管理流程
- 市政工程监理大纲投标方案(技术方案)
评论
0/150
提交评论