已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲 全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。2. 全等三角形的表示方法:若ABC和ABC是全等的三角形,记作 “ABCABC其中,“”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。翻折 如图(1),DBOCDEOD,DBOC可以看成是由DEOD沿直线AO翻折180得到的;旋转 如图(2),DCODDBOA,DCOD可以看成是由DBOA绕着点O旋转180得到的;平移 如图(3),DDEFDACB,DDEF可以看成是由DACB沿CB方向平行移动而得到的。5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2) 推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。【分类解析】全等三角形知识的应用(1) 证明线段(或角)相等 例1:如图,已知AD=AE,AB=AC.求证:BF=FC(2)证明线段平行例2:已知:如图,DEAC,BFAC,垂足分别为E、F,DE=BF,AF=CE.求证:ABCD(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在 ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE(4)证明线段相互垂直例4:已知:如图,A、D、B三点在同一条直线上,ADC、BDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。5、中考点拨:例1如图,在ABC中,ABAC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DFDE,连结FC求证:FA例2 如图,已知 ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=ED题型展示:例1 如图,ABC中,C2B,12。求证:ABACCD 【实战模拟】1. 下列判断正确的是( )(A)有两边和其中一边的对角对应相等的两个三角形全等(B)有两边对应相等,且有一角为30的两个等腰三角形全等(C)有一角和一边对应相等的两个直角三角形全等(D)有两角和一边对应相等的两个三角形全等2. 已知:如图,CDAB于点D,BEAC于点E,BE、CD交于点O,且AO平分BAC求证:OBOC3. 如图,已知C为线段AB上的一点,DACM和DCBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:DCEF是等边三角形。4.如图,在ABC中,AD为BC边上的中线求证:AD(AB+AC) 5. 如图,在等腰RtABC中,C90,D是斜边上AB上任一点,AECD于E,BFCD交CD的延长线于F,CHAB于H点,交AE于G求证:BDCG例6 D为等腰斜边AB的中点,DMDN,D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生 食品安全 主题班会课件
- 防暑安全课件
- 上海安全员C证考试(专职安全员)题及答案
- 人员的风险管理标准和管理措施规范(10篇)
- 小学生安全知识竞赛试题
- 国防知识竞赛题及其答案
- 单病种质量管理考试题库及答案
- 2024审计考试真题及答案
- 国开经济法形考任务1-4试题及答案
- 中班午睡安全教育课件
- 杭州萧山交通投资集团有限公司Ⅱ类岗位招聘7人笔试考试备考试题及答案解析
- 2026云南云天化石化有限公司校园招聘9人笔试考试备考试题及答案解析
- 资质转让售卖合同范本
- 保卫工作个人述职报告
- 电气元件符号知识培训课件
- 2025贵州贵安商业资产运营管理有限公司招聘11人考试笔试备考题库及答案解析
- 2025年人力资源公司猎头服务管理制度
- 2025年高校教师资格证之高等教育学测试卷附答案
- 工程项目质量管理体系标准模板
- 老年人血压自测
- 安全生产风险管控管理制度
评论
0/150
提交评论