![[计算机]Mydasj很好的数学分析精品课程培训给予我的启示.doc_第1页](http://file.renrendoc.com/FileRoot1/2019-1/8/6f453a43-5d9d-4f03-9fb8-bcce992d1a77/6f453a43-5d9d-4f03-9fb8-bcce992d1a771.gif)
![[计算机]Mydasj很好的数学分析精品课程培训给予我的启示.doc_第2页](http://file.renrendoc.com/FileRoot1/2019-1/8/6f453a43-5d9d-4f03-9fb8-bcce992d1a77/6f453a43-5d9d-4f03-9fb8-bcce992d1a772.gif)
![[计算机]Mydasj很好的数学分析精品课程培训给予我的启示.doc_第3页](http://file.renrendoc.com/FileRoot1/2019-1/8/6f453a43-5d9d-4f03-9fb8-bcce992d1a77/6f453a43-5d9d-4f03-9fb8-bcce992d1a773.gif)
![[计算机]Mydasj很好的数学分析精品课程培训给予我的启示.doc_第4页](http://file.renrendoc.com/FileRoot1/2019-1/8/6f453a43-5d9d-4f03-9fb8-bcce992d1a77/6f453a43-5d9d-4f03-9fb8-bcce992d1a774.gif)
![[计算机]Mydasj很好的数学分析精品课程培训给予我的启示.doc_第5页](http://file.renrendoc.com/FileRoot1/2019-1/8/6f453a43-5d9d-4f03-9fb8-bcce992d1a77/6f453a43-5d9d-4f03-9fb8-bcce992d1a775.gif)
已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。泰戈尔数学分析精品课程培训给予我的启示课程培训的三天里,听着陈老师剖析一个又一个教学难点,介绍一个又一个的数学经典问题,不时有豁然开朗、耳目一新的感觉。对数学分析这门课程,有了新的认识,对教学中的一些难点问题,也有了初步的解决方案。本想写一份教案作为作业,但交作业的时间实在是很紧迫,所以我还是选择了写培训体会。下面先谈谈解决几个教学难点的初步设想: 一、 实数系基本定理(实数的连续性) 我曾经问过一些数学专业大二的学生:实数和有理数的区别在哪里?回答我的是一片沉默和茫然的面孔。培训课上陈老师提了一个问题:有理数和无理数那个多?如果拿这个问题去问学生,我想大多数人也是不甚明了的。而另外一个问题:实数和整数的区别在哪里?学生却能很快回答:整数是离散的,实数是稠密的。这说明:在学生的脑海里,自然数是固有的概念,直观、容易理解,而实数的连续性,却很难在学生的脑海里扎根。如何让学生逐步接受实数的连续性?如何使实数系基本定理在学生的脑海里成为自然的,可以终生不忘的东西? 我设想这样来做: 首先,给出问题和反例,使学生认识到有理数和无理数的区别,有限与无穷的区别; 然后,结合两次数学危机较为系统地讲述数系发展的历史,给出较多的无理数的例子,使学生对无理数有感性的认识,比如陈老师在第三讲里面给出的和就是很好的素材,可以多搜集一些与这两个常数相关的,并且学生容易理解的例子; 最后,重点讲述与证明确界原理,并给出区间套定理、柯西收敛原理和单调有界定理的直观表述。证明确界原理时可以分解整个证明过程,使学生易于接受。 在这部分内容的讲述中,第一个目标是让学生对实数的连续性有深刻的印象,第二个目标是使他们认同学习实数理论的必要性,第三个目标是让他们对上面提到的四个定理有感性的直观的认识。对相关课程资料应该精心选择,合理安排,避免占用过多的课堂时间。二、 一致收敛问题 我们的教材(华东师大版)中关于一致收敛问题出现的顺序是:函数序列函数项级数含参变量积分。在讲述这些内容之前,必须让学生认识到学习一致收敛的必要性。但我发现,在函数序列部分,要讲清这个问题,给学生留下深刻的印象,比较困难。因为不管是极限函数保持分析性质还是极限运算与其它运算换序,都不太容易激发学生的兴趣,也许是因为我还没有找到合适的例子(刚发现陈老师今天讲的Peano曲线是很不错的例子)。另一方面,我发现学生对函数项级数的逐项求导和逐项积分比较感兴趣,因为这是计算一些级数的值必不可少的手段,那么就可以从这部分入手找一些合适的例子,让学生体会到一致收敛这个概念是必不可少的。 在学习了陈老师所讲的第五讲和第九讲之后,结合以往的教学经历,对于讲授一致收敛,我有如下设想: 首先,让学生对学习一致收敛的必要性有深刻的体会,对于收敛、一致收敛和内闭一致收敛的联系和区别,它们分别适用于解决什么样的问题,有正确的认识; 其次,使学生熟练掌握一致收敛和不一致收敛的严格的数学表述,并通过适量的习题,学会证明一致收敛和不一致收敛;精选一批习题和应用实例(如今天陈老师刚讲的Peano曲线),使学生体会到一致收敛的威力; 最后,一致收敛问题出现了三次,而相关问题在本质上是没有差别的,最好在第一次时就有一个行之有效的教学模式,后面只是强化和复习巩固,就能比较圆满地解决这一难点了。 关于这部分内容,还有个疑问要请教陈老师:让学生学会证明一致收敛和不一致收敛,仅仅是为了培养他们的推理论证的能力呢,还是有别的培养目标?这部分内容无疑是难点,它在课程体系中的重要性又是多大呢?三、 关于隐函数定理的证明 陈老师讲了利用拉格朗日乘数法求条件极值的问题,非常清楚。听完之后我有信心以后把拉格朗日函数的来龙去脉说清楚了。但还得有个前提条件,即学生掌握了隐函数定理,尤其是隐函数组的定理。如果学生对隐函数的概念没有正确的理解,对隐函数定理没有基本的认识,要讲清拉格朗日函数,倒也有些困难呢。 关于隐函数这个难点,也有老师在论坛里提出来了,这部分到底该怎么讲,哪些地方必须讲,哪些地方略讲,尤其是隐函数存在唯一性定理的证明思路,是否要求学生掌握?这些问题,目前我都找不到答案。但是对于隐函数定理的证明,在听陈老师讲重积分替换定理的证明后,我受到启发,找到一个通过分解证明过程从而简化证明的方法,如下所述: 先用例子给出证明的主体思路: 令,只要证明关于严格单调、连续,且有函数值互异的点,则利用连续函数的介值定理和函数单调性,根据隐函数的定义可以证明存在隐函数; 用单位圆的例子,结合图形说明从研究整体存在性转向研究局部存在性的思想; 等学生充分理解上述思路后,再结合图形引导学生证明如下目标: 1、对确定的,关于严格单调且连续; 2、利用定理的已知条件与上述单调性,结合连续函数的局部保号性找到函数值相异的点; 3、如一开始给出的例子,利用严格单调性和连续函数的介值性定理,就可以证明隐函数的存在性。 以上设想都是一些粗糙的框架,要真正实施,还需要经过更深入的思考和充分的准备,包括教学资料的积累和教学方法的选择。上述想法的不妥之处,敬请陈老师指正。 此次培训所获得的启示是多方面的,但很多思路还很模糊,对许多问题的理解都是初步的。看来要充分吸收陈老师赐予的灵丹妙药并转为己用,对我等教坛青苗来说,仍需假以时日。 这次培训有几句话是令我终生难忘的,也是我以后的奋斗目标。这就是陈老师转述的李大潜院士的观点:“任何一门学问,就其本质来讲,关键的内容,核心的概念,往往就不过那么几条;而发挥开来,就成了洋洋大观的巨著。理解了这些核心与关键 ,并通过严格的基本训练将其真正学到手,就掌握了这门课程的精髓,就能得心应手地加以应用和发挥,也就达到了学习这门课程的目的”,“一个教师,在教学中将简单的东西故弄玄虚,讲得复杂、烦琐,使学生莫测高深,绝对不是一个好教师;相反,将复杂的内容,抓住本质讲得明白易懂,使学生觉得自然亲切,趣味无穷,这才是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚财产公正协议书范本
- 注塑机设备租赁协议合同
- 永嘉专业会计代理协议书
- 汽车挂靠合同解除协议书
- 艺人签约合同之终止协议
- 电动摩托车租赁合同协议
- 混凝土浇灌施工合同范本
- 渡资产使用权合同或协议
- 腾讯产品包销合同协议书
- 汕尾打印机租赁协议合同
- 北京联合大学微观经济学期末试卷
- 2024版《供电营业规则》学习考试题库500题(含答案)
- 物业电梯困人应急处理
- 广东省初级中学学生学籍表
- 液压滑模施工资料
- 2024-2029全球及中国苯丙酮尿症(PKU)行业市场发展分析及前景趋势与投资发展研究报告
- 学术期刊推广方案
- 2023年保定市蠡县教师招聘考试真题
- T-SZHW 001-2024 深圳市城市管家服务管理规范(试行)
- 三废环保管理培训
- 《分娩方式的选择》课件
评论
0/150
提交评论