




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽财贸职业学院电商3班毕业设计安徽财贸职业学院电子商务专业毕业设计 学号 姓名 班级 指导教师 设计题目 电子商务中数据挖掘技术的应用研究摘要随着电子商务的普及和数据挖掘技术的发展,将数据挖掘技术应用到电子商务中可以解决电子商务中数据量庞大的问题,从而获得真正有价值的信息。文章简要的介绍了电子商务以及数据挖掘的概念,并对电子商务中所使用到的数据挖掘技术进行了详细的分析。关键词:电子商务;数据挖掘;分类方法目 录1.对电子商务中数据挖掘技术的认识(2)2电子商务概述(3)3数据挖掘技术(3)4.数据挖掘在客户关系管理中的应用(案例)(4)4.1.1潜在客户的获取(4)4.1.2客户的保持(4)4.1.3管理客户数据(5)4.3企业安全诚信管理(5)5电子商务中数据挖掘的技术与方法(6)5.1分类(6)5.2聚类分析(7)5.3关联规则挖掘(7)5.4序列模式分析(8)6 数据处理工作的安全保障与关键监控(8)6.1优化Web站点(8)6.2增强电子商务安全(8)7对电子商务中数据挖掘技术的期待(9)8参考文献1.对电子商务中数据挖掘技术的认识随着Internet的普及,电子商务得到了前所未有的发展,经销商和客户之间通过互联网进行交易,节省了大量的费用和时间。但是在电子商务中充斥着大量的数据,如何从这些大量的数据中挖掘出真正有价值的信息,帮助企业经销商制定更好的营销策略是电子商务急需解决的问题。数据挖掘,又称数据库中的知识发现(Knowledge Discovery in Database, KDD),也就是从大量的数据中挖掘出有用信息的一种技术。利用数据挖掘技术可以使经销商从大量的数据中挖掘出有用的信息帮助决策,从而在市场竞争中获得优势地位。2电子商务概述电子商务指交易当事人或参与人利用现代信息技术和计算机网络(主要是因特网)所进行的各类商业活动,包括货物贸易、服务贸易和知识产权贸易。“电子商务”中所包括的“现代信息技术”应涵盖各种使用电子技术为基础的通信方式;“商务”指不论是契约型还是非契约型的一切商务性质的关系所引起的种种事项。如果将“现代信息技术”看作一个子集,“商务”看作另一个子集,电子商务所涵盖的范围应当是这两个子集所形成的交集,即“电子商务”标题之下可能广泛涉及的因特网、内部网和电子数据交换在贸易方面的各种用途。电子商务与传统商务相比有以下优点:电子商务将传统的商务流程数字化、电子化,让传统的商务流程转化为电子流、信息流,突破了时间空间的局限,大大提高了商业运作的效率。子商务简化了企业与企业,企业与个人之间的流通环节,最大限度地降低了流通成本,能有效地提高企业在现代商业活动中的竞争力。电子商务是基于互联网的一种商务活动,互联网本身具有开放性全球性特点,电子商务可为企业及个人提供丰富的信息资源,为企业创造更多商业机会。电子商务对大型企业和中小企业都有利,因为大中型企业需要买卖交易活动多,实现电子商务能有效地进行管理和提高效率,对小企业同样有利,因为电子商务可以使企业以相近的成本进行网上交易,这样使中小企业可能拥有和大企业一样的流通渠道和信息资源,极大提高了中小企业的竞争力。电子商务将大部分商务活动搬到网上进行,企业可以实行无纸化办公节省了开支。3数据挖掘技术数据挖掘(Data Mining,DM)技术是随着计算机的广泛应用和数据的大量积累而发展起来的。数据挖掘是从大量的数据中提取或“挖掘”知识,即发现其中隐含的,未知的,有意义的信息的过程,它又被称为“数据库中知识发现”(KDD),也有人把数据挖掘视为数据库中知识发现的一个基本步骤,知识发现过程由以下步骤组成:数据清理;数据集成;数据选择;数据变换;数据挖掘;模式评估;知识表示。从商业的角度定义,数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。数据挖掘与传统的数据分析的不同是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先前未知、有效和实用3个特征。4.数据挖掘在客户关系管理中的应用(案例)4.1.1潜在客户的获取在大多数的商业领域中,业务发展的主要指标包括新客户的获取能力。企业的市场部门人员可以采用传统的方法来发展新客户,如开展广告活动;也可以根据所了解的目标客户群,将他们分类,然后进行直销活动。但是,随客户数量不断增长和每位客户的细节因素增多,要得出选择出相关的人口调查属性的筛选条件也会变得很困难。而数据挖掘技术可以帮助完成潜在客户的筛选工作。在对Web的客户访问信息的挖掘中,利用分类技术可以在Internet上找到未来的潜在客户。使用者可以先对已经存在的访问者根据其行为进行分类,并依此分析老客户的一些公共属性,决定他们分类的关键属性及相互间关系。对于一个新的访问者,通过在Web上的分类发现,识别出这个客户与已经分类的老客户的一些公共的描述,从而对这个新客户进行正确的分类。然后从它的分类判断这个新客户是有利可图的客户群还是无利可图的客户群,决定是否要把这个新客户作为潜在的客户来对待。客户的类型确定后,可以对客户动态地展示Web页面,页面的内容取决于客户与销售商提供的产品和服务之间的关联。若为潜在客户,就可以向这个客户展示一些特殊的、个性化的页面内容。4.1.2客户的保持随着行业中的竞争愈来愈激烈和获得一个新客户的开支愈来愈大,保持原有客户的工作也愈来愈有价值。在客户关系管理的实施中,企业通过预测,找出可能会流失的客户,并分析出主要有哪些因素导致他们想要离开,在此基础上,有针对性地挽留那些有离开倾向的客户。客户常会迷失在复杂的网站和众多的商品信息中。这就要求电子商务网站应当“以客户为中心”。在电子商务中,传统客户与销售商之间的空间距离已经不存在,在Internet上,每一个销售商对于客户来说都是一样的,那么使客户在自己的销售站点上驻留更长的时间,对销售商来说则是一个挑战。为了使客户在自己的网站上驻留更长的时间,就应该全面掌握客户的浏览行为,知道客户的兴趣及需求所在,并根据需求动态地向客户做页面推荐,调整Web页面,提供特有的一些商品信息和广告,以使客户满意,从而延长客户在自己的网站上的驻留的时间。实施客户关系管理战略,为客户提供与众不同的个性化服务。基于数据挖掘的电子商务推荐系统通过对客户的访间行为、访问频度、访问内容等信息进行挖掘,提取客户的特征。获取客户访问模式。据此创建个性化的电子商店,主动向客户提供商品推荐,帮助客户便捷地找到感兴趣的商品。这是一种全新的个性化购物体验。不仅容易使访问者转变成购买者,而且可根据客户当前购物车中的物品,向客户推荐一些相关的物品,提高站点企业的交叉销售量,甚至还可以根据需求动态地向客户做页面推荐,提供个性化的商品信息和广告,提高客户对访问站点的兴趣和忠诚度,防止客户流失。4.1.3管理客户数据随着“以客户为中心”的经营理念的不断深入人心,分析客户、了解客户并引导客户的需求已成为企业经营的重要课题。基于数据挖掘技术,企业将最大限度地利用客户资源,开展客户行为的分析与预测,对客户进行分类。有助于客户盈利能力分析,寻找潜在的有价值的客户,开展个性化服务,提高客户的满意度和忠诚度。通过Web资源的挖掘,了解客户的购买习惯和兴趣,从而改善网站结构设计,推出满足不同客户的个性化网页。用数据挖掘可以有效地获得客户。比如通过数据挖掘可以发现购买某种商品的消费者是男性还是女性,学历、收入如何,有什么爱好,是什么职业等等。甚至可以发现不同的人在购买该种商品的相关商品后多长时间有可能购买该种商品,以及什么样的人会购买什么型号的该种商品等等。在采用了数据挖掘后,针对目标客户发送的广告的有效性和回应率将得到大幅度的提高,推销的成本将大大降低。同时,在客户数据挖掘的基础上,企业可以发现重点客户和评价市场性能,制定个性化营销策略,拓宽销售渠道和范围,为企业制定生产策略和发展规划提供科学的依据。通过呼叫中心优化与客户沟通的渠道,提高对客户的响应效率和服务质量,促进客户关系管理的自动化和智能化。4.3企业安全诚信管理低劣的信用状况是影响商业秩序的突出问题,已经引起世人的广泛关注。由于网上诈骗现象层出不穷,企业财务“造假”现象日益严重,信用危机成为制约电子商务发展的重要因素。利用数据挖掘技术对企业经营进行跟踪,开展企业的资产评估、利润收益分析和发展潜力预测,构建完善的安全保障体系,实施网上全程监控,强化网上交易和在线支付的安全管理。基于数据挖掘的信用评估模型,对交易历史数据进行挖掘,发现客户的交易数据特征,建立客户信誉度级别,有效地防范和化解信用风险,提高企业信用甄别与风险管理的水平和能力。5电子商务中数据挖掘的技术与方法电子商务中的数据挖掘过程一般包括3个主要的阶段:数据准备、数据挖掘、结果解释和评价。数据准备又可分为数据选取和数据预处理两个步骤。数据选取的目的是确定发现任务的操作对象。即目标数据,是根据用户的需要从原始数据库中抽取的一组数据。数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换以及对数据降维。数据挖掘阶段首先要确定数据挖掘的目标和挖掘的知识类型。确定挖掘任务后,根据挖掘的知识类型选择合适的挖掘算法,最后实施数据挖掘操作,运用选定的挖掘算法从数据库中抽取所需的知识。结果的解释和评价。数据挖掘阶段发现的知识,经过评估,可能存在冗余或无关的知识,这时需要将其剔除,也有可能知识不满足用户的需求,需要重复上述挖掘过程重新进行挖掘。另外,由于数据挖掘最终要面临用户,因此,还需要对所挖掘的知识进行解释,以一种用户易于理解的方式供用户所使用。数据挖掘按照其挖掘任务主要包括分类和预测、聚类分析、关联规则挖掘,回归发现和序列模式发现等技术。在选择某种数据挖掘技术之前,首先要将需要解决的问题转化成正确的数据挖掘任务,然后根据挖掘的任务来选择使用哪些数据挖掘技术。在电子商务活动中,主要使用下面的一些数据挖掘技术。5.1分类分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型或分类函数,将数据库中的数据项映射到某个给定的类别。分类的主要方法有基于决策树模型的数据分类,贝叶斯分类算法,ID3算法和基于BP神经网络算法等。假定现在我们有一个描述顾客属性的数据库,包括他们的姓名、年龄、收入、职业等,我们可以按照他们是否购买某种商品(例如,计算机)来进行分类。如果现在有新的顾客添加到数据库中,我想将新计算机的销售信息通知顾客,若将促销材料分发给数据库中的每个新顾客,如此可能会导致耗费较多的精力和物力。而若我们只给那些可能购买新计算机的顾客分发材料,可以在较大的程度上节省成本。为此,可以构造和使用分类模型。分类方法的特点是通过对示例数据库中的数据进行分析,已经建立了一个分类模型,然后利用分类模型对数据库中的其它记录进行分类。5.2聚类分析聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。聚类分析的方法是数据挖掘领域最为常见的技术之一。常用的聚类分析方法有:分割聚类方法,层次聚类方法,基于密度的聚类方法和高维稀疏聚类算法等。聚类分析方法与分类方法的不同之处是聚类事先对数据集的分布没有任何的了解。因此在聚集之后要有一个对业务很熟悉的人来解释这样聚集的意义。很多情况下一次聚集你得到的分类对你的业务来说可能并不好,这时你需要删除或增加变量以影响分类的方式,经过几次反复之后才能最终得到一个理想的结果。聚类分析方法在电子商务中的使用也极其广泛。其中一个典型的应用是帮助市场分析人员从客户基本库中发现不同的客户群,并且用购买模式来刻画不同客户群的特征。通过对聚类的客户特征的提取,把客户群分成更细的市场,提供针对性的服务。5.3关联规则挖掘关联规则是描述数据库中数据项之间所存在关系的规则,即根据一个事物中的某些项的出现可导出另一些项在同一事物中也出现,即隐藏在数据间的关联或相互关系,比如在一次购买活动中所买不同商品的相关性。在电子商务中,从大量商务事物记录中发现有趣的关联关系,可以帮助许多商务决策的制定。关联规则挖掘最初也是最典型的形式是购物篮分析。它通过发现顾客放入其购物篮中不同商品之间联系,分析顾客的购买习惯。例如,在同一次去超级市场,如果顾客购买牛奶,他也购买面包(包括购买什么类型的面包)的可能性有多大?这些信息可以帮助零售商有选择地经销和安排货架,引导销售。例如,将牛奶和面包尽可能放近一些,可以进一步刺激一次去商店同时购买这些商品。在电子商务中,由于Web服务器的日志文件记录了用户的访问记录,通过这些记录利用关联规则挖掘网上顾客购买产品的相关度,对某些品牌的喜好和忠诚,价格接受范围,以及包装要求等,挖掘的结果可以用来帮助管理者进行网站规划、确定商品的种类、价格和新产品的投入。5.4序列模式分析序列模式分析和关联规则挖掘相似,但侧重点在分析数据间的前后序列关系。它能发现数据库中形如在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A-B-C出现的频度较高的信息。序列模式分析的一个例子是“九个月以前购买奔腾PC的客户很可能在一个月内订购新的CPU芯片”。6 数据处理工作的安全保障与关键监控6.1优化Web站点对Web站点的链接结构的优化可从三方面来考虑:通过对WebLog的挖掘,发现用户访问页面的相关性,从而对密切联系的网页之间增加链接,方便用户使用。利用路径分析技术判定在一个Web站点中最频繁的访问路径,可以考虑把重要的商品信息放在这些页面中,改进页面和网站结构的设计,增强对客户的吸引力,提高销售量。通过对WebLog的挖掘,发现用户的期望位置。如果在期望位置的访问频率高于对实际位置的访问频率,可考虑在期望位置和实际位置之间建立导航链接,从而实现对Web站点结构的优化。例如:美国运通公司(AmericanExpress)有一个用于记录信用卡业务的数据库,数据量达到54亿字符,并仍在随着业务进展不断更新。运通公司通过对这些数据进行挖掘,制定了“关联结算(RelationshipBilling)优惠”的促销策略,即如果一个顾客在一个商店用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机构财务管理及预算执行方案
- 固定污染源中氯气含量测定技术方案
- (2025年标准)电路改造协议书
- (2025年标准)低职高聘协议书
- 2025安康市岚皋县城区学校选调教师(25人)考试备考试题及答案解析
- 2025江西南昌大学校内外招聘1人考试模拟试题及答案解析
- 2025四川东方电气集团(成都)共享服务有限公司招聘3人笔试参考题库附答案解析
- 2025江苏南京城建资产经营管理有限公司招聘1人考试备考试题及答案解析
- 2025广东江门恩平市选调公务员5人考试备考题库及答案解析
- 2025年上海师范大学附属外国语中学实习教师招聘笔试备考试题及答案解析
- 附件2:慢病管理中心评审实施细则2024年修订版
- 食品安全制度管理目录
- 【建筑专业】16J914-1公用建筑卫生间(完整)
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
- 邮政市场业务员(中级)理论考试复习题库(附答案)
- DZ∕T 0070-2016 时间域激发极化法技术规程(正式版)
- 消化内镜进修总结汇报
- 兽医检验题库与答案
- 换电柜地租赁合同范本
- 影响安全生产的六种员工心理状态
- 儿童视角下幼儿园班级主题墙创设的策略研究
评论
0/150
提交评论