已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中,考,总 复 习,四边形,一、四边形的分类及转化,二、几种特殊四边形的性质,三、几种特殊四边形的常用判定方法,四、中心对称图形与中心对称的区别和联系,五、有关定理,七、典型举例,六、主要画图,两组对边平行,一组对边平行 另一组对边不平行,一、四边形的分类及转化,平行且相等,平行且相等,平行 且四边相等,平行 且四边相等,两底平行 两腰相等,对角相等 邻角互补,四个角 都是直角,同一底上 的角相等,对角相等 邻角互补,四个角 都是直角,互相平分,互相平分且相等,互相垂直平分,且每一条对角线平分一组对角,相等,互相垂直平分且相等,每一条对角线平分一组对角,中心对称图形,中心对称图形 轴对称图形,中心对称图形 轴对称图形,中心对称图形 轴对称图形,轴对称图形,二、几种特殊四边形的性质:,三、几种特殊四边形的常用判定方法:,1、定义:两组对边分别平行 2、两组对边分别相等 3、一组对边平行且相等 4、对角线互相平分,1、定义:有一外角是直角的平行四边形 2、三个角是直角的四边形 3、对角线相等的平行四边形,1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形 3、对角线互相垂直的平行四边形,1、定义:一组邻边相等且有一个角是直角的平行四边形 2、有一组邻边相等的矩形 3、有一个角是直角的菱形,1、两腰相等的梯形 2、在同一底上的两角相等的梯形 3、对角线相等的梯形,四、中心对称图形与中心对称的区别和联系,中心对称图形:,中心对称:,如果把一个图形绕着某一点旋转180后与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.,如果把一个图形绕着某一点旋转180后与另一个图形重合,那么这两个图形关于这个点中心对称,这个点叫做对称中心.,C,A,B,1、中心对称的两个图形是全等图形 2、中心对称的两个图形的对称点连线通过对称中心,且被对称中心平分,中心对称图形的对称点连线通过 对称中心,且被对称中心平分,o,o,五、有关定理:,平行,360,(n - 2)180,360,两底和的一半,360,条件:在梯形ABCD中,EF是中位线,3、两条平行线之间的距离以及性质:,平行线段,两条平行线,两条平行线中,一条直线上任意一点到另一条直线的距离,叫这两条平行线的距离.,5、过三角形一边的中点,且平行于另一边的直线,必过 .,条件:ADBECF,AB=BC,结论:DE=EF,条件:在ABC中,AD= BD , DEBC,结论:AE=EC,条件:在梯形ABCD中,AE=DE ,ABEFDC,结论:BF=FC,相等,第三边的中点,另一腰的中点,六、主要画图:,1、画平行四边形、矩形、菱形、正方形、等腰梯形,如:画一个平行四边形ABCD,使边BC=5cm,对角线AC=5cm,BD=8cm.,如图:点D、E、F、H就是线段AB的五等分点,七、典型举例:,例1:如图,四边形ABCD为平行四边形,延长BA至E,延长DC至F,使BE=DF,AF交BC于H,CE交AD于G. 求证:E=F,证明:,四边形ABCD是平行四边形,BE=DF,四边形AFCE是平行四边形,注:利用平行四边形的性质来证明线段或角相等是一种常用方法.,E=F,例2:如图,在四边形ABCD中,AB=2,CD=1,A=60, B= D=90 ,求四边形ABCD的面积.,E,注:四边形的问题经常转化为三角形的问题来解,转化的方法是添加适当的辅助线,如连结对角线、延长两边等.,解:,延长AD,BC交于点E,,在RtABE中,A=60,,E=30,又AB=2,在RtCDE中,同理可得,S四边形ABCD=S RtABE - S RtCDE,2,1,例3:如图,在梯形ABCD中,ABCD,中位线EF=7cm,对角线ACBD,BDC=30,求梯形的高线AH,析:求解有关梯形类的题目,常需添加辅助线,把问题转化为三角形或四边形来求解,添加辅助线一般有下列所示的几种情况:,延长两腰,M,解:,过A作AMBD,交CD的延长线于M,又ABCD,四边形ABDM是平行四边形,,DM=AB,AMC= BDC=30,又中位线EF=7cm,,CM=CD+DM=CD+AB=2EF=14cm,又ACBD,,ACAM,,AHCD,ACD=60,注:解“翻折图形”问题的关键是要认识到对折时折痕为重合两点的对称轴,会形成轴对称图形. 本题通过设未知数,然后根据图形的几何元素间的关系列方程求解的方法,是数学中常用的“方程思想”.,例4:已知,如图,矩形纸片长为8cm,宽为6cm, 把纸对折使相对两顶点A,C重合,求折痕的长.,D,解:,设折痕为EF,连结AC,AE,CF,若A,C两点重合,它们必关于EF对称,则EF是AC的中垂线 ,AF=FC,设AC与EF交于点,OAF=FC=xc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心怀希望追逐梦想的议论文(9篇)
- 下载电工考试题库及答案
- 人工智能领域责任承诺书3篇范文
- 产品开发与知识产权保护承诺函8篇范文
- 2025年健康科技行业健康管理与健康科技创新研究报告及未来发展趋势预测
- 会议计划与准备流程指南会议效果保障型
- 医疗服务安全操作规范承诺函4篇
- 生活中的小事情:记事作文6篇
- 证券业从业人员考试资格及答案解析
- 跨部门沟通协调系统执行方案模板
- 2025年上海工会面试题目及答案
- 2025年党员领导干部廉洁自律知识考试题库及答案
- 冬季模板支撑施工安全管理措施
- 工会绩效考核管理办法
- 提高晨间护理合格率
- 热管辅助散热设计-洞察及研究
- 台球俱乐部福利活动方案
- 租赁公司薪资管理制度
- 网吧禁毒巡查管理制度
- 软件框架互操作研究-洞察阐释
- SJG412017深圳市既有房屋结构安全隐患排查技术标准
评论
0/150
提交评论