




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模型定阶或识别 n假设数据已经平稳化,下一步是确定模 型的阶数。有两种方法,一种是根据随 机过程的参数特征,一种是根据信息准 则。 n下面是几类随机过程的参数特征: 三种随机过程偏自相关函数的特点 三类过程的偏自相关函数和自相关函数 MA(q) AR(p) ARMA(p,q) 自相关函数 q步截尾 拖尾 拖尾 偏自相关函数 拖尾 p步截尾 拖尾 定阶 样本自相关函数的计算和判断 定阶 H0:i =i+1 =0 用前面介绍的方法计算出样本自相关系数 ,零 假设成立时 近似服从正态分布N(0,1/T) 所以近似5%显著水平下,每个 在两倍标准差 之间,则不能拒绝零假设。 具体地说,如果 -2/ p 那么估计的偏相关系数近似服从正态分布 N(0,1/T) 所以近似5%显著水平下,如果-2/T1/2p成立 n评价模型的优劣准则 根据信息准则进行模型识别(定阶) 残差平方和最小化 AIC (Akaikes information criterion) BIC(Schwartz Bayesian information criterion)准则 n对自由度进行调整 nk是模型中未知参数的个数,et是估计出的误差 定阶: AIC准则和BIC准则 不同的书对AIC和BIC使用不同的变形。经 常使用的有两种 AIC(p,q)=ln( )+2(p+q)/T BIC(p,q)=ln( )+(p+q)ln(T)/T T样本长度,如果有常数项p+q被p+q+1代 替,ln表示自然对数。在ARMA模型中需 要选择p和q,所以用p+q代替k。 是对噪声项方差的估计 定阶: AIC准则和BIC准则 AIC(p,q)=2lnL/T+2(p+q)/T BIC(p,q)=-2lnL/T+(p+q)ln(T)/T LnL是模型的对数似然函数值 Q是与参数无关的量。因为我们只关心使得AIC或 BIC最小的值,所以忽略Q.带入对数似然函数 表达式中,可以发现与前面的AIC和BIC的表达 是一致的。 AIC和BIC判断步骤 (1)给定滞后长度的上限P和Q,一般取为T/10, Ln(T), (2)修改样本区间使得滞后长度不出现负值。 (3)对任意一对滞后长度p=0,1,P,q=0,1, ,Q,分别估计模型ARMA(p,q) (4)代入上面的公式,计算出AIC(p,q)和BIC(p,q) (5)最小值对应的p,q值作为ARMA模型的阶数。 用AIC和BIC准则确定阶数 AIC准则-MA(1) q 0 1 2 3 P 0 -7.415 -7.455 -7.426 -7.373 1 -7.39 -7.395 -7.422 -7.272 2 -7.433 -7.383 -7.174 -7.221 用AIC和BIC准则确定阶数 BIC-白噪声 q 0 1 2 3 P 0 -7.415 -7.411 -7.338 -7.239 1 -7.346 -7.251 -6.998 -7.001 2 -7.345 -7.251 -6.998 -7.001 练习: nP179 15(9) 极大似然估计:以AR(1)为例 t=c+t-1 +t 假设 i.i.d.N(0, 2) 估计: =( c, , 2) 已知: y1,y2,yT E(1)=c/(1-) E(1-)2=2/(1-2) 极大似然估计 当1的观测已知时,2的条件分布 2=c+1 +2 (2|1= y1) N(c+y1, 2) 极大似然估计 Y1,Y2的联合分布密度函数,是条件密度和 边际密度相乘 f2,Y1 (y2,y1; )= f2|Y1 (y2|y1; ) f1 (y1; ) 类似的,已知y1,y2,3的条件分布 极大似然估计 三者的联合分布 f3,2,Y1 (y3,y2,y1; )= f3|Y2,Y1 (y3|y2, y1; ) f2|Y1 (y2|y1; ) f1 (y1; ) 一般给定y1,y2,yt-1,t的条件分布只和yt- 1有关 极大似然估计 ft,Yt-1,,Y1 (yt, yt-1,,y1; ) = f1 (y1; ) ft|Yt-1(yt|yt-1; ) (4.17) 估计:满足下面的条件的解 求解未知参数的方程是非线性的,如果只 关心(2,T)的条件联合分布,得 到条件极大似然函数。 极大似然估计 同样通过解方程来得到未知参数的估计: 这时得到的是线性方程组 最小二乘估计法:计算例子- produce a stationary AR(2) process: yi=-0.6yi-1+0.80yi-2+xi and find the estimate of parameters Matlab code: nx = randn(1000, 1); ny = filter(1, 1 -0.6 0.08, x); %产生上述AR(2)过程 nm = ar(y,2) 模型的检验 检验残差是否是白噪声过程 1)画出残差的折线图 2)画出残差的ACF,PACF 3)计算统计量Q Box-Pierce Q-检验 其中,T为样本容量 Ljung and Box 检验 Q检验 1)m主观给定,一般在15到30之间,可令m=T1/2 2)H0:t是白噪声过程 3) H0成立时,统计量Q渐进服从2(m-p-q),如果 模型中包括常数项,那么Q渐进服从2(m-1-p-q) 4)Q检验会给出相应的P-值(P-值0.05拒绝H0) Q检验图示 真实临界值 计算值 卡方分布临界 Q检验存在缺陷:经常不能拒绝零假设。 把不是白噪声时,也误认为是白噪声 检验练习 例m=6,模型中有常数项,考虑下面的几个模型 ,哪个模型是合格的模型?给出其它几个模型 Q检验统计量的自由度。 (p+q) Q 自由度 P-value (1,0) 15.92 6-1-0-1 0.019 (2,0) 11.82 0.249 (0,1) 4.12 0.139 (0,2) 6.94 0.21 (1,1) 7.94 0.047 模型选择 一个好模型满足的条件 n每个解释变量都显著不等于0. n残差是白噪声过程 n具有最小的AIC或BIC值 练习:从下面的几个模型中选 择一个最优模型 AR(1) AR(2) AR(3) ARMA(1,1) MA(2) 1 0.17 0.21 0.3 0.19 ( 0.0000) (0.0004) (0.002) (0.0024) 2 0.06 0.04 (0.0005) (0.003) 3 0.0005 (0.44) 1 0.05 0.48 (0.0007) (0.0034) 2 0.06 (0.009) AIC 607.3 592.5 615 598.4 609.5 BIC 609.9 594.3 6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行南通市崇川区2025秋招笔试价值观测评题专练及答案
- 薄膜加热器件制造工三级安全教育(班组级)考核试卷及答案
- 2025年蓝田县康复医院医护人员招聘笔试模拟试题及答案解析
- 余热利用工工艺考核试卷及答案
- 上海色彩考试试题及答案
- 2025年金属非金属矿山(露天矿山)主要负责人安全生产考试试题附答案
- 2025年中职统招英语真题及答案
- 小怪物挑战考试题及答案
- 【更新中!2025贵州二建管理真题及答案解析】
- 钛渣冶炼工晋升考核试卷及答案
- 美发师考试题
- 浙江安保考试题库及答案
- 苏州安全生产教育培训课件
- 私密线上招商课件
- 兵团面试题目及答案
- 2025贵州贵阳市投资控股集团房地产置业有限公司招聘12人考试参考题库及答案解析
- 2025水发集团有限公司招聘216人考试模拟试题及答案解析
- 智慧加油站物联网综合管控平台建设综合解决方案
- 2025年甘肃省公职人员考试时事政治考试试题(附含答案)
- 花岗岩铺设方案
- 2025年护理疼痛试题及答案
评论
0/150
提交评论