顺序链式一元多项式加法、减法、乘法运算的实现.doc_第1页
顺序链式一元多项式加法、减法、乘法运算的实现.doc_第2页
顺序链式一元多项式加法、减法、乘法运算的实现.doc_第3页
顺序链式一元多项式加法、减法、乘法运算的实现.doc_第4页
顺序链式一元多项式加法、减法、乘法运算的实现.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1设计内容及要求1)设计内容(1)使用顺序存储结构实现多项式加、减、乘运算。例如:,求和结果:(2)使用链式存储结构实现多项式加、减、乘运算,求和结果:2)设计要求(1)用C语言编程实现上述实验内容中的结构定义和算法。(2)要有main()函数,并且在main()函数中使用检测数据调用上述算法。(3)用switch语句设计如下选择式菜单。 *数据结构综合性实验* *一、多项式的加法、减法、乘法运算* * 1.多项式创建 * * 2.多项式相加 * * 3.多项式相减 * 4.多项式相乘 * 5.清空多项式 * 0.退出系统 * 请选择(05) *请选择(0-5):1.2数据结构设计根据下面给出的存储结构定义:#define MAXSIZE 20 /定义线性表最大容量 /定义多项式项数据类型typedef structfloat coef; /系数int expn; /指数 term,elemType;typedef structterm termsMAXSIZE; /线性表中数组元素int last; /指向线性表中最后一个元素位置 SeqList;typedef SeqList polynomial;1.3基本操作函数说明 polynomial*Init_Polynomial();/初始化空的多项式int PloynStatus(polynomial*p)/判断多项式的状态 int Location_Element(polynomial*p,term x)在多项式p中查找与x项指数相同的项是否存在int Insert_ElementByOrder(polynomial*p,term x)/在多项式p中插入一个指数项xint CreatePolyn(polynomial*P,int m)/输入m项系数和指数,建立表示一元多项式的有序表pchar compare(term term1,term term2)/比较指数项term1和指数项term2polynomial*addPloyn(polynomial*p1,polynomial*p2)/将多项式p1和多项式p2相加,生成一个新的多项式polynomial*subStractPloyn(polynomial*p1,polynomial*p2)/多项式p1和多项式p2相减,生成一个新的多项式polynomial*mulitPloyn(polynomial*p1,polynomial*p2)/多项式p1和多项式p2相乘,生成一个新的多项式void printPloyn(polynomial*p)/输出在顺序存储结构的多项式p1.4程序源代码#include#include#include#define NULL 0#define MAXSIZE 20typedef structfloat coef;int expn;term,elemType;typedef structterm termsMAXSIZE;int last;SeqList;typedef SeqList polynomial;void printPloyn(polynomial*p);int PloynStatus(polynomial*p)if(p=NULL)return -1;else if(p-last=-1)return 0;elsereturn 1;polynomial*Init_Polynomial()polynomial*P;P=new polynomial;if(P!=NULL)P-last=-1;return P;elsereturn NULL;void Reset_Polynomial(polynomial*p)if(PloynStatus(p)=1)p-last=-1;int Location_Element(polynomial*p,term x)int i=0;if(PloynStatus(p)=-1)return 0;while(ilast & p-termsi.expn!=x.expn)i+;if(ip-last)return 0;elsereturn 1;int Insert_ElementByOrder(polynomial*p,term x)int j;if(PloynStatus(p)=-1)return 0;if(p-last=MAXSIZE-1)coutThe polym is full!last;while(p-termsj.expn=0) p-termsj+1=p-termsj; j-; p-termsj+1=x;p-last+;return 1;int CreatePolyn(polynomial*P,int m)float coef;int expn;term x;if(PloynStatus(P)=-1)return 0;if(mMAXSIZE)printf(顺序表溢出n);return 0;elseprintf(请依次输入%d对系数和指数.n,m);for(int i=0;iterm2.expn)return;else if(term1.expnterm2.expn)return;elsereturn=;polynomial*addPloyn(polynomial*p1,polynomial*p2)int i,j,k;i=0;j=0;k=0;if(PloynStatus(p1)=-1)|(PloynStatus(p2)=-1)return NULL;polynomial*p3=Init_Polynomial();while(ilast & jlast)switch(compare(p1-termsi,p2-termsj)case:p3-termsk+=p1-termsi+;p3-last+;break;casetermsk+=p2-termsj+;p3-last+;break;case=:if(p1-termsi.coef+p2-termsj.coef!=0)p3-termsk.coef=p1-termsi.coef+p2-termsj.coef;p3-termsk.expn=p1-termsi.expn;k+;p3-last+;i+;j+;while(ilast)p3-termsk+=p1-termsi+;p3-last+;return p3;polynomial*subStractPloyn(polynomial*p1,polynomial*p2)int i;i=0;if(PloynStatus(p1)!=1)|(PloynStatus(p2)!=1)return NULL;polynomial*p3=Init_Polynomial();p3-last=p2-last;for(i=0;ilast;i+)p3-termsi.coef=-p2-termsi.coef;p3-termsi.expn=p2-termsi.expn;p3=addPloyn(p1,p3);return p3;polynomial*mulitPloyn(polynomial*p1,polynomial*p2)int i;int j;int k;i=0;if(PloynStatus(p1)!=1)|(PloynStatus(p2)!=1)return NULL;polynomial*p3=Init_Polynomial();polynomial*p=new polynomial*p2-last+1;for(i=0;ilast;i+)for(k=0;klast;k+)pk=Init_Polynomial();pk-last=p1-last;for(j=0;jlast;j+)pk-termsj.coef=p1-termsj.coef*p2-termsk.coef;pk-termsj.expn=p1-termsj.expn+p2-termsk.expn;p3=addPloyn(p3,pk);return p3;void printPloyn(polynomial*p)int i;for(i=0;ilast;i+)if(p-termsi.coef0 & i0)cout+termsi.coef;elsecouttermsi.coef;coutxtermsi.expn;coutendl;void menu()couttt*数据结构综合性实验*endl;couttt*一、多项式的加、减、乘法运算*endl;couttt* 1.多项式创建 *endl;couttt* 2.多项式相加 *endl;couttt* 3.多项式相减 *endl;couttt* 4.多项式相乘 *endl;couttt* 5.清空多项式 *endl;couttt* 0.退出系统 *endl;couttt* 请选择(0-5) *endl;couttt*endl;void main()int sel;polynomial*p1=NULL;polynomial*p2=NULL;polynomial*p3=NULL;while(1)menu();coutsel;switch(sel)case 1:p1=Init_Polynomial();p2=Init_Polynomial();int m;printf(请输入第一个多项式的项数:n);scanf(%d,&m);CreatePolyn(p1,m);printf(第一个多项式的表达式为p1=);printPloyn(p1);printf(请输入第二个多项式的项数:n);scanf(%d,&m);CreatePolyn(p2,m);printf(第二个多项式的表达式为p2=);printPloyn(p2);break;case 2:printf(p1+p2=);if(p3=subStractPloyn(p1,p2)!=NULL)printPloyn(p3);break;case 3:printf(np1-p2=);if(p3=subStr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论