三相变压器及联结组与不对称短路.doc_第1页
三相变压器及联结组与不对称短路.doc_第2页
三相变压器及联结组与不对称短路.doc_第3页
三相变压器及联结组与不对称短路.doc_第4页
三相变压器及联结组与不对称短路.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章 三相变压器的联结组与不对称短路原 理 简 述 1 极性测定的依据 高、低压线圈之间的相电压相位决定于两个线圈的标号及其绕向,如图5-1示。若高、低压线圈的标号和绕向都相同(或都相反,图略),则高、低压侧的相电压同相,这时我们说两点同极性。若只有标号(或绕向,图略)反了,如图5-2,则相电压的相位相反,这时我们说两点不同极性。 2三相绕组的联接方法 把三个单相绕组联成三相绕组将有好几种联法,其中最基本的形式有星形(或形)接法和三角形(D或形)接法两种,此外,还有曲折接法(或接法)。它们的绕组联接图和电压相量图如图5-3所示。 形联接方法的副方每相绕组有一中间抽头,将绕组分成为相等的两半,和、 和、和分别套在不同的铁芯柱上,把一个铁芯柱上的上半个绕组与另一铁芯柱上的下半个绕组反向串联,组成新的一相绕组后,再接成星形联接,其相量图每相相量连接线成曲折形,顾名思意称为曲折形(或形)接法。从电压相量图可见,相电压只有原来绕组的,就是说在相同的电压下绕组匝数增加到倍,增加了用铜量和损耗。但形联接的变压器能防止冲击波影响,运行在多雷雨地区可减少变压器雷击损耗。还常使用于某些整流变压器中以防止中性点位移,使三相电压接近平衡来提高整流效率。因此形接法近年来渐渐增多,国家标准GB1094-85中也被列为常用联结组之一。图5-3 三相绕组联接的基本形式 (1)形联接法 (2)形联接法 (3)形联接法图 5-4 联接和联接的左行接法 在图5-4中画出了三角形接法和曲折形接法的另一种联接次序。我们把图5-3称右行接法,图5-4就称左行接法。由于联接次序不同,它们的线电压相位关系就不相同,这一点在下面的联结组别中应注意区别。 一般情况下三角形联接和曲折形联接只采用右行联接,以后不加说明的三角形联接和曲折形联接都是指右行联接。3三相变压器的联结组 三相变压器高、低压侧线电压之间的相位关系,不但与标号和绕向有关,还与三相线圈的联接方式有关。根据电机学理论,习惯上用“时钟法”来表示高、低压两侧间线电压的相位关系。时钟法是把高压侧线电压的相量作为时钟的分针,且其指向定在点,低压侧对应的线电压的相量作为钟表的时针,时针和分针指向的角度差别就是高低压侧间的线电压的相位差。例如联结组标号为,而国家标准GB1094-85现规定用“”,则说明高低压侧的联接分别为星形和三角形接法,而两者对应的线电压的相位关系是:高压侧线电压相量超前低压侧线电压相量 (又称时钟序数为)。 三相电力变压器常用的联结组标号是(1) (即);(2) (即);(3) (即);(4) (即)。它们对应的相量图及其联接方法如图5-5所示。图中标号采用了国家标准中的有关规定,其内容是:三相变压器的线圈联接成星形、三角形或曲折形时,对高压绕组分别以字母或表示,对中压或低压绕组分别以字母或表示。如果星形联接或曲折形联接的中性点是引出的,则分别以或及或表示。和属高压侧,和属低压侧。 图5-5中采用的是一种以“线电压重心重合法”来确定联结组别的方法。长期以来,利用相量图确定绕组的联结组别,一直采用线电压法。由于国际电工委员会 (IEC)推荐了一种新的方法,即线电压三角形重心重合法,简称线电压重心重合法。这种方法与传统的线电压法相比,即简单、又直观。我国的标准 “GB1094-85”也使用了此法。现介绍如下,无论是形、形或形联接的绕组,其相量图的三个顶点联线,便可组成一个正三角形,被称为线电压三角形。将高低压绕组线电压三角形的重心重合在一起,由该重心分别向高低压同一相的对应线端联线,例如由重心联到和,并用其中较长的线段(即高压侧的)表示时钟的分针,而用较短的线段(即低压侧)表示时钟的时针,那么这时的时针所显示的小时数即为组别。 用以上方法确定联结组别与用传统的线电压法所得出的结果是完全一致的。因为两个正三角形重心重合时,对应中线的夹角总是与对应边的夹角相等的,所以对应中 线所表示的相量之间的相位关系,完全与对应边所表示的线电压相量之间的相位关系相同。传统的钟时序数和国标GB1094-85的规定的钟时序数也基本相 同,只是传统的钟时序数为时,标准GB1094-85规定用“”表示。图5-5 三相电力变压器常用的联结组标号对照表(摘自GB1094-85)4不对称短路 三相变压器运行过程中,可能出现不平衡负载。最极端的情况是单相短路或两相短路。这时变压器内各相电流大小不再相等,三相的相位也不再依次差, 这种现象一般属于故障情况。分析不对称运行的基本方法是应用对称分量法和迭加原理,即把一组不对称的三相电流(或其它物理量)用三组(即正序、负序、零 序)对称的三相电流去代替,然后对三组对称的电流分别求解,从中取出任何一组作为单相问题来处理,最后把计算结果迭加起来,就得到原来不对称的三相数值。 对变压器来说,正序电流和负序电流所遇到的阻抗是相同的,因而变压器的正序阻抗和负序阻抗是相等的。但对零序电流来说,因三相的相位相同就会遇到不同的阻抗,而且随绕组的联接方式和铁芯结构型式的不同而零序阻抗也各不相同。5空载电流和电势的波形分析 只有磁通波形是正弦波时,该磁通所在匝链绕组感应的变压器电势才是正弦波。在有饱和的情况下,若磁通波形为正弦波时,变压器在额定电压时的励磁电流波形根 据作图法求得的波形却是“尖顶波”。按照富氏级数尖顶波可以分解为基波和一系列奇次高次谐波的合成。因为高次谐波中,三次谐波的幅值最大,对变压器性能影 响也颇显著,所以问题归结为如果三次谐波的电流能够流通,就可以得到正弦波的磁通。但是若原边绕组中三次谐波电流没通路(例如联 接时),磁通的波形是否为正弦,就要看该台变压器属哪种铁芯结构。三次谐波的磁通在三相芯式变压器中所遇磁阻很大而基本不通,则认为磁通波仍然是正弦波; 而三相组式变压器中由于三相磁路互不关联,三次谐波磁通可以流通,故磁通波形成为非正弦的平顶波形,引起绕组中的感应电势成为尖顶波。实验五 三相变压器的联结组与不对称短路实验一、实验目的 1掌握三相变压器的极性测定方法。 2掌握校验三相变压器的联结组的方法。 3研究三相变压器不对称短路。 4观察分析三相变压器空载电流和电势的波形。二、实验内容 1测定三相变压器相间和原副方的极性。 2 连接并判定以下联结组 (1) (即) (2) (即) (3) (即) (4) (即) (5) (即) (6) (即) 若被试变压器不满足形联接的条件,以上内容则只做内容(1)、(2)、(3)、(4),若满足条件,则只做(1)、(3)、(5)、(6)。 3*. 不对称短路 (1) (即)单相短路 (2) (即)两相短路 4*. 测定联接变压器的零序阻抗。 5*. 分析观察三相芯式和三相组式变压器不同联接方法时的空载电流和电势波形。三、实验说明及操作步骤 1三相变压器相间和高低压侧极性的测定 普通三相双绕组变压器12根引出线若杂乱排列,而无其它任何标号时,如何知道或标出某根引线属于哪一侧、哪一相,通过采用以下步骤来判定。 (1) 采用电桥或万用表的电阻档判定属于同一线圈的两个端头,并测量每个线圈的电阻大小以判定高低压绕组。暂定标记和。 (2) 测定高压线圈的相间极性时,先设相标志正确,在两端加低电压(对于伏的双绕组变压器,加的电压约为伏即可),如图5-6所示,再用电压表测量电压和,若,说明相标记正确;若,说明相标记错误,应将相标记互换。然后用同样的方法判断相标记,这时就应在(或)加低电压(约),在(或)相测电压。 (3) 同理,可测得低压线圈的相间极性。 图5-6 测定相间 图5-7 三相变压器测原 图5-8 测原副边极性 极性的接线图 副边极性接线图 时的相量图(4) 测定同一铁芯柱的两个线圈,按图5-7接线。原副方中性点用一根导线相连,对应的相量图如图5-8,高压线圈施加低电压(约),测量,据相量图知其中必有两电压(图中为和)相等,而另一个电压(图中的)所处的那一相属于同一铁芯柱的线圈。同理可测得另外两相线圈所在的铁芯柱。 (5) 测原副边极性,接线图同图5-7,高压线圈施加低电压后,测出。若则与同相,说明原副边极性相同。当时,表示和反相位,说明原副边不同极性,则副线圈的标记和两两对调。图 5-9 (即)联结组2. 校验联结组 (1) (即) 按图5-9接线,图中两点用导线相连,说明相量图的两点重合,以便根据几何关系得出某联结组的校核计算式(表5-1中的计算公式)。 经调压器在原方施加额定电压,测量电压、,将数值填入表5-1的实测值栏。同时用电压比(指原、副边线电压之比)代入表5-1中的对应公式,算出的值填入计算值栏。如果测出的数值与计算值符合,表示线圈联结组属于表中所对应的联结组名称。 改变线圈接线,用同样的方法测定以下五种联结组: (2) (即) (3) (即) (4) (即) (5) (即) (6) (即) 注:a.在联接和联结组时需将被试变压器的副方线圈首末端的标号人为对调,即原为,原为,原为作为输入端,原为,且将点和副方调换后的点(即原点)短接,方可进行测量。 b.为避免(3)和(4)的副方接错而引起短路,可在副方三角形的任一开口处测量开口电压,当电压值接近零时,表示三角形接法正确。 c.对于和 (即和)联结组,分别按照表5-1所对应的线圈接线图接线,其中原接在调压器的输出端。形连接的变压器其副方要有两套相同的三相绕组,再按图分别接成和。同样也要将原、副方的两点短接。调节调压器输出到被试变压器额定电压后,测出电压比并测量记录于表5-1中,然后与对应公式求得的结果相比较。注意:副方线电压为形接法后的线电压。 d.因该实验要及时用表5-1中的公式来验证对应栏内的测量值,故每一组同学要带一只计算器以便于实验。3*三相变压器的不对称短路 图5-10 单相短路 图5-11 两相短路 图5-12 测定零序阻抗 接线图 接线图 线路图 (1)联接的单相短路 接线如图5-10所示,调压器输出调零后,合上电源开关S1、S2,逐渐增加变压器外施电压至副方短路电流接近额定值为止。测取此时副方短路电流和原方三相电流及三相电压,数据填入表5-2。表5-2 不对称短路数据 短路类型 单相短路 两相短路 (2)联接两相短路用(1)的同样方法按图5-11接线测取联接的两相短路,所测数据也填入表5-2。 注意:以上内容(1)、(2)可用三相芯式变压器测,也可用三相组式变压器测。 4*测定联接的变压器的零序阻抗 接线如图5-12所示。即将被试变压器的副边三相绕组按顺序串联,通以单相电流,这时流入各相绕组的电流大小相等,相位相同,相当于三相零序电流。首先将调压器输出电压调在零的位置,然后合上电源开关S1、S2,逐渐增加调压器输出电压,使零序电流在和两点时,记录零序电压、电流和功率,填入表5-3。对于三相组式变压器,由于三相磁路独立而互不相关,故可用其中一台单相变压器的空载实验来测定。表5-3 零序阻抗测定数据 序 号 (A) (W) (V) 1 2 5*. 分别观察三相变压器不同联接方法、不同铁芯结构时的空载电流和电势波形 该实验内容可通过指导教师的演示或观看电机实验的“系列电教片”中关于“三相芯式和组式变压器不同联接方法时的空载电流和电势波形”,让学生在实验课中用“电机学”的知识边看边分析、联接时,并在外施电压为时所观察到的几种情况下的空载电流、副方相电势、线电势的波形。 该实验也可作为个别同学的选做实验。实验操作情况如下述: (1) 联接接线如图5-13所示,三相变压器作联接(开关S3打开时)。为阻值较小的串联电阻,在上面引出空载电流信号。电源电压经开关S1、调压器和S2接至变压器高压侧,在外施电压为和三种情况下,用示波器观察空载电流、副边相电势和线电势(图中对应于和),并记录波形形状。 (2)联接 接线同上,当开关S3闭合后,原边即为接法。重复前面过程,观察空载电流、相电势和线电势的波形,并记录其形状。 (3) 联接接线如图5-14所示,当副方绕组不构成闭合三角形时,即开关S3断开,调节原方电压至额定值,用示波器观察原方相电势波形及副方开口三角形电压波形。闭合开关S3,则副方绕组接成三角形,调节原方电压到额定值,观察原边相电势波形及副边三角形内部谐波电流及其波形。更换被试变压器(若原来为芯式现应改为组式),对上述内容作适当重复,并作分析对比。 图5-13 观察和联接三相 图5-14 联接三相变压器的变压器空载电流和电势波形 电势、电流和开口电压波形四、实验报告要求 1将计算的各联结组的值填入表5-1中,并与实际测量值比较。 2不对称短路电流的计算值 (1)单相短路 副方电流 原方电流(忽略励磁电流) 式中为原、副方相电压之比。以上计算值与实测值比较,并简要分析二者差别之原因。讨论联接三相组式变压器能否单相负载运行。(2)两相短路 副方电流 原方电流(忽略励磁电流) 式中仍为原、副方相电压之比。把计算值与实测值作简要分析比较。 每相零序阻抗的计算 式中的是根据表5-3中取两次测量的平均值而得,分别为变压器的零序阻抗、电阻和电抗。 分析三相芯式与组式变压器零序阻抗不同的原因。 将不同铁芯结构和不同联接方法时三相变压器的空载电流和电势波形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论