2005-2011年北京高考数学(理科)汇编之解答题(第19题).doc_第1页
2005-2011年北京高考数学(理科)汇编之解答题(第19题).doc_第2页
2005-2011年北京高考数学(理科)汇编之解答题(第19题).doc_第3页
2005-2011年北京高考数学(理科)汇编之解答题(第19题).doc_第4页
2005-2011年北京高考数学(理科)汇编之解答题(第19题).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2005-2011年高考数学(理科)汇编之解答题(第19题)11 (本小题共14分)已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点.(I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.10 (本小题共14分)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。09(本小题共14分)已知双曲线的离心率为,右准线方程为(I)求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值。08(本小题共14分)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1()当直线过点时,求直线的方程;2r()当时,求菱形面积的最大值07(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为(I)求面积以为自变量的函数式,并写出其定义域;(II)求面积的最大值06(本小题共14分) 已知点,动点满足条件.记动点的轨迹为.()求的方程;()若是上的不同两点,是坐标原点,求的最小值.05(本小题共12分)设数列an的首项a1=a,且, 记,nl,2,3,(I)求a2,a3;(II)判断数列bn是否为等比数列,并证明你的结论;(III)求参考答案:11(共14分)解:()由已知得所以所以椭圆G的焦点坐标为离心率为()由题意知,.当时,切线l的方程,点A、B的坐标分别为此时当m=1时,同理可得当时,设切线l的方程为由设A、B两点的坐标分别为,则又由l与圆所以由于当时,所以.因为10 (共14分)(I)解:因为点B与A关于原点对称,所以点得坐标为. 设点的坐标为 由题意得 化简得 . 故动点的轨迹方程为(II)解法一:略解法二:若存在点使得与的面积相等,设点的坐标为 则. 因为, 所以 所以 即 ,解得 因为,所以 故存在点S使得与的面积相等,此时点的坐标为.09(本小题共14分)()所求双曲线的方程为.()的大小为.08(共14分)解:()直线的方程为,即()菱形的面积取得最大值07(共13分)解:(I),其定义域为(II)记,梯形面积的最大值为06(共14分)()W的方程为()当取得最小值2。05(共12分)解:(I)a2a1+=a+,a3=a2=a+;(II)bn

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论