




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学专题讲座 创新型、开放型问题 曾庆坤 例1:某种细菌在培养过程中,细菌每 半小时分裂一次(由一个分裂为两个 ),经过两小时,这种细菌由一个可 分裂繁殖成( ) A :8个 B:16个 C:4个 D:32个 例1:某种细菌在培养过程中,细菌每 半小时分裂一次(由一个分裂为两个 ),经过两小时,这种细菌由一个可 分裂繁殖成( ) A :8个 B:16个 C:4个 D:32个 分裂 次数 01234 细菌 个数 1=202=214=228=2316=24 B 例2:如图,已知ABC,P为AB上一点 ,连结CP,要使ACPABC,只需 添加条件_(只需写一种合适 的条件)。 1=B 2=ACB AC2=APAB 启示:若Q是AC上一点,连结PQ, APQ与ABC相似的条件应是什么 ? 例3:先根据条件要求编写应用题,再 解答你所编写的应用题。 编写要求: (1):编写一道行程问题的应用题, 使得根据其题意列出的方程为 (2)所编写应用题完整,题意清楚 。联系生活实际且其解符合实际。 分析:题目中要求编“行程问题”故应 联想到行程问题中三个量的关系(即路程, 速度,时间) 路程=速度时间或时间=路程速度、速度 =路程 时间 因所给方程为 那么上述关系式应该用:时间=路程 速度 故路程=120 方程的含义可理解为以两种 不同的速度行走120的路程,时间差1。 所编方程为:A,B两地相距120千米,甲乙 两汽车同时从A地出发去B地,甲 比乙每小 时多走10千米,因而比乙早到达1小时求甲 乙两汽车的速度? 解:设乙的速度为x千米/时,根据题意得方 程: 解之得:x=30 经检验x=30是方程的根 这时x+10=40 答:甲 乙两车的速度分别为40千米/时,30 千米/时 例4 已知关于x的一元二次方程 x2+2x+2-m=0 (1)若方程有两个不相等的实数根, 求实数m的取值范围? (2)请你利用(1)所得的结论,任 取m的一个数值代入方程,并用配方法 求出方程的两个实数根? 分析:一元二次方程根与判别式的关系 0 方程有两个不相等的 实数根,于是有:22-4(2-m)0,解之 得m的取值范围;(2)中要求m任取一 个值,故同学们可在m允许的范围内 取一个即可,但尽量取的m的值使解 方程容易些。而且解方程要求用配方 法,这就更体现了m取值的重要性, 否则配方法较为困难。 解(1)方程有两个不相等的实数根 0,即4-4(2-m)0 m1 (2)不妨取 m=2代入方程中得: x2+2x=0 配方得: x2 +2x+12=12 即(x+1)2=1 x+1=1 解之得:x1=0 x2=2 例5 在一服装厂里有大量形状为等腰 直角三角形的边角布料(如图)现找 出其中一种,测得C=90,AC=BC=4 ,今要从这种三角形中剪出一种扇形 ,做成不同形状的玩具,使扇形的边 缘半径恰好都在ABC的边上,且扇形 的弧与 ABC的其他边相切,请设计 出所有可能符合题意的方案示意图, 并求出扇形的半径(只要画出图形, 并直接写出扇形半径)。 C A B 分析:扇形要求弧线与三角形的边相切,半径都在三角 形边上 相切的情况有两种(1)与其中一边相切(直角边相切 、斜边相切) (2)与其中两边相切(两直角边相切、一直角边和一 斜边相切) 并且尽量能使用边角料(即找最大的扇形) (1)与一直角边相切可如图所示 (2)与一斜边相切如图所示 (3)与两直角边相切如图所示 (4)与一直角边和一斜边相切如图所示 解:可以设计如下图四种方案: r1=4 r2=2 r3=2 r4=4 -4 例6:一单杠高2.2米,两立柱之间的距离为 1.6米,将一根绳子的两端栓于立柱与铁杠结 合处,绳 子自然下垂呈抛物线状. (1)一身高0.7米的小孩子站在离立柱0.4 米处,其头部刚好触上绳子,求绳子最低点到 地面的距离; (2)为供孩子们打秋千,把绳子剪断后, 中间系一块长为0.4米的木板,除掉系木板用 去的绳子后,两边的绳子正好各为2米,木板 与地面平行,求这时木板到地面的距离(供选 用数据: ) 分析:由于绳子是抛 物线型,故求绳子最 低点到地面的距离就 是求抛物线的最小值 问题,因而必须知抛 物线的解析式,由于 抛物线的对称轴是 y轴,故可设解析式为:y=ax2+c的形式 ,而此人所站位置的坐标为( 0.4,0.7),绳子系的坐标为(0.8,2.2) ,将其代入解析式得a,c 分析:求EF离地 面的距离,实际 上是求PO的长度 ,也就是求GH的 长度,而GH=BH BG,BG正好在 RtBFG中,可 根据勾股定理求 出。 解:如图,根据建立的直角坐标系, 设二次函数解析式为y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消化内科病历范文
- 委托介绍信格式,委托介绍信格式范文
- 2025年建筑装饰工程师招聘面试模拟题
- (2025年标准)股权个税协议书
- (2025年标准)股份暂停投资协议书
- 健身中心销售计划书范文
- 净化工程调试全过程质量控制问题及处理措施
- 2025年电信运营商招聘笔试模拟题集与答案公布
- 物流配送方案重点难点及措施
- 2025年市场营销人员招聘面试宝典案例分析题及答案
- 小学1530安全教育
- 给排水外网施工方案
- 2025年度汽车用品供应链管理服务协议
- T-SZEIA 001-2024 温室气体产品碳足迹量化方法与要求 变电站电气设备
- 全脑课程理论知识
- 餐饮公司应聘简历
- 牢记教师初心不忘育人使命作新时代合格人民教师课件
- 一科一品一特色护理妇产科
- 《老年照护芳香疗法应用规范》标准文本及编制说明
- 2024-年全国医学博士外语统一入学考试英语试题
- 冶金渣公司安全生产委员会工作职责
评论
0/150
提交评论