




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全国中考信息资源门户网站 圆经典例题分析总结经典例题透析1垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.思路点拨:本题考查圆的确定、垂径定理以及直角三角形的性质有关等知识.解:(1)作法略.如图所示.(2)如图所示,过O作OCAB于D,交于C, OCAB, . 由题意可知,CD=4cm. 设半径为x cm,则. 在RtBOD中,由勾股定理得: . . 即这个圆形截面的半径为10cm.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作九章算术中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为O的直径,弦ABCD于E,CE=1寸,AB=10寸,则直径CD的长为( )A12.5寸 B13寸 C25寸 D26寸答案:D解析:因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在RtAOE中,即,解得OA=13,进而求得CD=26(寸).2圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2如图所示,ABC内接于O,点D是CA延长线上一点,若BOC=120,BAD等于( )A.30 B.60 C.75 D.90思路点拨:本题可求先出BAC的度数,BAC所对的弧是优弧,则该弧所对的圆心角度数为360-120=240,所以,因此,.答案:B.举一反三:【变式1】如图所示,O的内接四边形ABCD中,AB=CD,则图中与1相等的角有_.答案:6,2,5.解析:本题中由弦AB=CD可知,因为同弧或等弧所对的圆周角相等,故有1 =6=2=5.【变式2】如图所示,已知AB为O的直径,AC为弦,ODBC,BC=4cm.(1)说明ACOD; (2)求OD的长.解:(1) AB是O的直径, C=90, ODCB, ADO=C=90, ACOD.(2) ODBC,O是AB的中点, D是AC的中点, .3切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3如图所示,直线MN是O的切线,A为切点,过A的作弦交O于B、C,连接BC,证明NAC=B.思路点拨:如图所示,过A作O的直径AD,连接DC,利用角的关系,可证明NAC与B相等.证明:过A作直径AD,连接DC, ACD=90, D+DAC= 90. B=D, B+DAC=90. MN是O的切线, NAD= 90, NAC=B.总结升华:已知切线,经常添加过切点的半径或直径,利用直径(或半径)与切线的垂直关系来解决问题.举一反三:【变式1】如图所示,DB切O于点A,AOM=66,则DAM=_.答案:147.解析:因为DB是O的切线,所以OADB,由AOM=66,得OAM=,DAM=90+57=147.【变式2】如图所示,AB是O的直径,是O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.思路点拨:已知是O的切线,连接过切点C的半径OC,易得AEOCBF,因为O是直径的中点,因此,EC=CF.解:连接OC. EF是O的切线,OCEF. AFEF,BFEF, AEOCBF. AO=BO. EC=CF.总结升华:利用圆心是直径的中点,本题可证得OC为梯形AEFB的中位线.进一步可得AE+BF=AB.【变式3】如图所示,ABC内接于O,要使过点A的直线EF与O相切于A点,则图中的角应满足的条件是_(只填一个即可).答案:BAE=C或CAF=B.4如图所示,EB、BC是O是两条切线,B、C是切点,A、D是O上两点,如果E=46,DCF=32,那么A的度数是_.答案:99.解析:由EB=EC,E=46知,ECB= 67,从而BCD=180-67-32=81,在O中,BCD与A互补,所以A=180-81=99.举一反三:【变式1】如图所示,已知在ABC中,B=90,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DEOC;证明:连接OD, 则ODC=90,ODE=OED,由切线长定理得:CD=CB, RtODCRtOBC, COB=COD, DOE+2OED=180,又 DOE+2COB=180, OED=COB, DE/OC4两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是_.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_.思路点拨:(1)直线与圆的位置关系:相离、相切、相交.判定方法有两种:一是看它们的公共点的个数;二是比较圆心到直线的距离与圆的半径的大小.实际上这两种方法是等价的,由题意可知,圆的半径为6.5cm,而圆心到直线的距离6cmy2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10已知射线OF交O于B,半径OAOB,P是射线OF上的一个动点(不与O、B重合),直线AP交O于D,过D作O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条 件的图形.(2)观察图形,点P在移动过程中,DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写 出一条与DPE的边、角或形状有关的规律.(3)点P在移动过程中,设DEP的度数为x,OAP的度数为y,求y与x的函数关系式,并写出自变量x的 取值范围.思路点拨:如图所示,连接OD,因为DE是O的切线,故ODE=90,又OA=OD,故A=ODA,OAP+OPD=90,ODA+ADC=90,故OPD=ADC=EDP,DEP是等腰三角形.解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车挂靠运营合作协议模板
- 2025年通信基站电气设备安装与优化升级协议
- 2025二手车二手车经销商培训服务合同范本
- 2025年度地磅称重系统销售与售后技术支持协议
- 2025处理离婚财产争议协议范本:夫妻共同财产处理流程详解
- 2025版砂石行业供销合同模板与解析
- 2025年二手家居用品转让定金合同模板参考
- 2025装配式建筑部品部件标准化设计在装配式建筑装配式阳台预制构件施工中的应用报告
- 2025年新型智能电脑及配件研发购销合同
- 2025第一节智能制造产业链协同创新合作协议书编号:XX027
- 人教版数学四年级上册全册课本练习题精心整理可编辑可打印
- 退费账户确认书
- 郑州市第四中学新初一分班(摸底)语文模拟试题(5套带答案)
- 2-第二章-各向异性材料的应力-应变关系
- 医院防爆反恐应急预案
- 云南省安全员C证考试题库及答案
- 死亡待遇申请表
- 集中供热管网系统一次网的调节方法
- 无线充电技术在汽车上的应用
- 马工程《刑法学(下册)》教学课件 第17章 危害国家安全罪
- 11科室临床路径、单病种管理目录
评论
0/150
提交评论