




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数常见题型热点一导数的几何意义1、若,则( )A B C D (1)设曲线yax2在点(1,a)处的切线与直线2xy60平行,则a_;(2)设f(x)xln x1,若f(x0)2,则f(x)在点(x0,y0)处的切线方程为_变式:设函数f(x)ax(a,bZ),曲线yf(x)在点(2,f(2)处的切线方程为y3.(1)求yf(x)的解析式;(2)证明曲线yf(x)上任一点处的切线与直线x1和直线yx所围三角形的面积为定值,并求出此定值变式训练2 已知函数f(x)xa(2ln x),a0.讨论f(x)的单调性练:1已知函数f(x)的导函数为f(x),且满足f(x)3xf(1)x2,则f(1)()A1 B2 C1 D22、三次函数f(x),当x1时有极大值4;当x3时有极小值0,且函数图象过原点,则f(x)_3、已知函数f(x)x33x29xa(a为常数)在区间2,2上有最大值20,那么此函数在区间2,2上的最小值为_热点二利用导数研究函数的单调性【例2】已知函数f(x)x2aln x.(1)当a2时,求函数f(x)的单调递减区间;(2)若函数g(x)f(x)在1,)上单调,求实数a的取值范围 变式训练2 已知函数f(x)xa(2ln x),a0.讨论f(x)的单调性1、(2012浙江名校创新冲刺卷,文10)已知f(x)是R上的周期为2的偶函数,当0x1时,f(x)x22x3ln x,设af,bf,cf,则()Aabc BcabCacb Dbca2、函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,则f(x)2x4的解集为()A(1,1) B(1,)C(,1) D(,).3、设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x 0,且g(3)0,则不等式f(x)g(x)恒成立,求c的取值范围已知a为实数,若在(,2)和2,+上都是递增的,求a的取值范围热点三利用导数研究函数极值和最值问题【例3】已知函数f(x)x3ax23x,(1)若f(x)在区间1,)上是增函数,求实数a的取值范围;(2)若x是f(x)的极值点,求f(x)在1,a上的最大值;(3)在(2)的条件下,是否存在实数b,使得函数g(x)bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出实数b的取值范围;若不存在,试说明理由变式训练3 设aR,函数f(x)ax33x2.(1)若x2是函数yf(x)的极值点,求a的值;(2)若函数g(x)f(x)f(x),x0,2在x0处取得最大值,求a的取值范围练(2012浙江宁波十校联考,文21)设函数f(x)a2ln x4x,g(x)bx2,(a0,b0,a,bR)(1)当b时,函数h(x)f(x)g(x)在x1处有极小值,求函数h(x)的单调递增区间;(2)若函数f(x)和g(x)有相同的极大值,且函数p(x)f(x)在区间1,e2上的最大值为8e,求实数b的值(其中e是自然对数的底数)热点四:恒成立问题(转化与化归思想方法)例:已知函数f(x)x(ln xm),g(x)x3x.(1)当m2时,求f(x)的单调区间;(2)若m时,不等式g(x)f(x)恒成立,求实数a的取值范围1、已知函数f(x)axln x(aR)(1)若a1,求曲线yf(x)在x处切线的斜率;(2)求函数f(x)的单调区间;(3)设g(x)2x,若对任意x1(0,),存在x20,1,使f(x1)g(x2),求实数a的取值范围 2、设函数,若对于任意,恒成立,则实数m的取值范围为 ( )ABCD3、已知函数 (aR)(1)若在1,e上是增函数,求a的取值范围; (2)若1xe,证明:4、函数,已知和为的零点.(1)求和的值;(2)设,证明:对恒有5、已知函数f(x)x4ax32x2b(xR),其中a,bR.(1)当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 事故管理的安全培训记录课件
- 环保应急预案评审汇报
- 装修行业年终总结
- 食品外贸公司汇报
- 2025年专利申请文件的试题及答案
- 2025年招标采购从业人员专业技术能力考试(招标采购项目管理中级)冲刺试题及答案(浙江温州)
- 《种树郭橐驼传》
- 第08讲 两点分布、二项分布、超几何分布与正态分布(练习)(解析版)
- 生产运营工作总结
- 2025诊所租赁合同协议范本与诊所药品供应合同
- 暑期校园维修方案投标文件(技术方案)
- 人教版美术五年级上册第2课 色彩的和谐 课件
- 医院质控指标管理制度
- 铁路信号专业词汇中英对照版
- 赔偿保密协议书范本
- 马工程《艺术学概论》-绪论省公开课一等奖全国示范课微课金奖课件
- 汉服妆造培训课件
- 电能质量控制与安全标准手册
- 2025年自愿放弃房屋经营权协议书模板
- 护理专科建设与发展
- 急性脑卒中课件
评论
0/150
提交评论