经济时间序列的季节调整、分解和平滑方法eviews应用.ppt_第1页
经济时间序列的季节调整、分解和平滑方法eviews应用.ppt_第2页
经济时间序列的季节调整、分解和平滑方法eviews应用.ppt_第3页
经济时间序列的季节调整、分解和平滑方法eviews应用.ppt_第4页
经济时间序列的季节调整、分解和平滑方法eviews应用.ppt_第5页
已阅读5页,还剩102页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章第二章 经济时间序列的经济时间序列的 季节调整、分解与平滑季节调整、分解与平滑 本章主要介绍经济时间序列的分解和平滑方 法。时间序列分解方法包括季节调整和趋势分解 ,指数平滑是目前比较常用的时间序列平滑方法 。 1 经济指标的月度或季度时间序列包含4种变动要素:长期 趋势要素T、循环要素C、季节变动要素S 和不规则要素I。 长期趋势要素长期趋势要素 ( (T T ): ): 代表经济时间序列长期的趋势特性。 循环要素循环要素 ( (C C ): ): 是以数年为周期的一种周期性变动。 季节要素季节要素 ( (S S ): ): 是每年重复出现的循环变动,以12个月或4 个季度为周期的周期性影响,由温度、降雨、每年中的假期和 政策等因素引起。季节要素和循环要素的区别在于季节变动是 固定间距(如季或月)中的自我循环,而循环要素是从一个周 期变动到另一个周期,间距比较长且不固定的一种周期性波动 。 不规则要素不规则要素 ( (I I ): ): 又称随机因子、残余变动或噪声,其变动 无规则可循,这类因素是由偶然发生的事件引起的,如罢工、 意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误 差等。 一、经济时间序列的分解一、经济时间序列的分解 2 图图1 1 我国工业总产值的时间序列我国工业总产值的时间序列 Y Y 图形图形 图图2 2 工业总产值的趋势工业总产值的趋势 循环要素循环要素 TC TC 图形图形 图图3 3 工业总产值的季节变动要素工业总产值的季节变动要素 S S 图形图形 图图4 4 工业总产值的不规则要素工业总产值的不规则要素 I I 图形图形 3 二、季节调整的概念二、季节调整的概念 季节性变动的发生,不仅是由于气候的直接影响,而 且社会制度及风俗习惯也会引起季节变动。经济统计中的 月度和季度数据或大或小都含有季节变动因素,以月份或 季度作为时间观测单位的经济时间序列通常具有一年一度 的周期性变化,这种周期变化是由于季节因素的影响造成 的,在经济分析中称为季节性波动。经济时间序列的季节 性波动是非常显著的,它往往遮盖或混淆经济发展中其他 客观变化规律,以致给经济增长速度和宏观经济形势的分 析造成困难和麻烦。因此,在进行经济增长分析时,必须 去掉季节波动的影响,将季节要素从原序列中剔除,这就 是所谓的“季节调整” (Seasonal Adjustment)。 4 2.12.1 移动平均方法移动平均方法 移动平均法(Moving Averages)的基本思路是很简 单的,是算术平均的一种。它具有如下特性: 1. 周期(及其整数倍)与移动平均项数相等的周 期性变动基本得到消除; 2. 互相独立的不规则变动得到平滑。 这两条特性可以证明。 5 2.1.12.1.1 简单的移动平均公式简单的移动平均公式 时间序列数据 y = y1, y2, , yT ,T 为样本长度,在时 点 t 上的2k+1项移动平均值 MAt 的一般表示为 (2.1.1) 式中的k为正整数,此时移动平均后的序列MA的始端和末端 各欠缺k项值,需要用插值或其它方法补齐。 6 例如,常用的三项移动平均 (2.1.2) 两端补欠项: (2.1.3) (2.1.4) 1.1.21.1.2 中心化移动平均中心化移动平均 考虑消除季节变动时,最简单的方法是对月度数据进行12 个月移动平均。此时,由于项数是偶数,故常常进行所谓“移动 平均的中心化”,即取连续的两个移动平均值的平均值作为该月 的值。 7 (2.1.5) 因为12是偶数,通过求平均值可以达到中心化,即中心化 移动平均值为 (2.1.6) 中心化移动平均的一般公式为 (2.1.7) 8 需要指出的是由于采用12个月中心化移动平均后,序列的 两端各有6个欠项值,需要用插值或其它数值计算方法将其补 齐。 2.1.32.1.3 加权移动平均加权移动平均 上面介绍的12个月中心化移动平均是二次移动平均,也 可以用一次移动平均(2.1.7)式表示,这种移动平均方法就叫做 加权平均,其中每一期的权数不相等,下面介绍几种常用的 加权移动平均方法。 9 除了上述移动平均方法外,X-11季节调整法中还采 用亨德松(Henderson)的5, 9, 13和23项加权移动平均。选 择特殊的移动平均法是基于数列中存在的随机因子,随 机因子越大,求移动平均的项数应越多。 10 1. 1. 季节调整方法的发展季节调整方法的发展 1954年美国商务部国势普查局(Bureau of Census,Depart- ment of Commerce)在美国全国经济研究局(NBER)战前研究的 移动平均比法(The Ratio-Moving Average Method)的基础上, 开发了关于季节调整的最初的电子计算机程序,开始大规模地 对经济时间序列进行季节调整。此后,季节调整方法不断改进 ,每次改进都以X再加上序号表示。1960年,发表了X-3方法 ,X-3方法和以前的程序相比,特异项的代替方法和季节要素 的计算方法略有不同。1961年,国势普查局又发表了X-10方法 。X-10方法考虑到了根据不规则变动和季节变动的相对大小来 选择计算季节要素的移动平均项数。1965年10月发表了X-11方 法,这一方法历经几次演变,已成为一种相当精细、典型的季 节调整方法 2.22.2 经济时间序列的季节调整方法经济时间序列的季节调整方法 11 X-11方法是基于移动平均法的季节调整方法。它的特 征在于除了能适应各种经济指标的性质,根据各种季节调 整的目的,选择计算方式外,在不作选择的情况下,也能 根据事先编入的统计基准,按数据的特征自动选择计算方 式。在计算过程中可根据数据中的随机因素大小,采用不 同长度的移动平均,随机因素越大,移动平均长度越大。 X-11方法是通过几次迭代来进行分解的,每一次对组成因 子的估算都进一步精化。正因为如此,X-11方法受到很高 的评价,已为欧美、日本等国的官方和民间企业、国际机 构(IMF)等采用,成为目前普遍使用的季节调整方法。 12 美国商务部国势普查局的X12季节调整程序是在X11方 法的基础上发展而来的,包括X11季节调整方法的全部功 能,并对X11方法进行了以下3方面的重要改进: (1) 扩展了贸易日和节假日影响的调节功能,增加了季 节、趋势循环和不规则要素分解模型的选择功能; (2) 新的季节调整结果稳定性诊断功能; (3) 增加X12-ARIMA模型的建模和模型选择功能。 13 X12季节调整方法的核心算法是扩展的X11季节调整程序 。共包括4种季节调整的分解形式:乘法、加法、伪加法和对 数加法模型。注意采用乘法、伪加法和对数加法模型进行季节 调整时,时间序列中不允许有零和负数。 加法模型 (2.2.1) 乘法模型: (2.2.2) 对数加法模型: (2.2.3) 伪加法模型: (2.2.4) 2 2季节调整的模型选择季节调整的模型选择 14 设Yt 表示一个无奇异值的月度时间序列,通过预测 和回推来扩展序列使得在序列的尾端不需要对季节调 整公式进行修改。把Yt 分解为趋势循环项TCt 、季节项 St 和不规则要素It 。现以加法模型为例,介绍X12季节 调整方法的核心算法(为叙述简便而不考虑补欠项的 问题)。共分为三个阶段: 3 3X12X12季节调整方法的核心算法季节调整方法的核心算法 15 通过中心化12项移动计算平均趋势循环要素的初始估计 (2.2.5 ) 计算SI项的初始估计 (2.2.6 ) 通过33移动平均计算季节因子S的初始估计 (2.2.7 ) 消除季节因子中的残余趋势 (2.2.8 ) 季节调整结果的初始估计 (2.2.9 ) 第一阶段第一阶段 季节调整的初始估计季节调整的初始估计 16 利用Henderson移动平均公式计算暂定的趋势循环要素 (2.2.10 ) 计算暂定的SI项 (2.2.11 ) 通过35项移动平均计算暂定的季节因子 (2.2.12 ) 计算最终的季节因子 (2.2.13 ) 季节调整的第二次估计结果 (2.2.14 ) 第二阶段第二阶段 计算暂定的趋势循环要素和最终的季节因子计算暂定的趋势循环要素和最终的季节因子 17 利用Henderson移动平均公式计算最终的趋势循环要素 (2.2.15) 计算最终的不规则要素 (2.2.16) 第三阶段第三阶段 计算最终的趋势循环要素和最终的不规则要素计算最终的趋势循环要素和最终的不规则要素 18 本节主要介绍利用EViews软件对一个月度或季度时间序 列进行季节调整的操作方法。在EViews工作环境中,打开一 个月度或季度时间序列的工作文件,双击需进行数据处理的 序列名,进入这个序列对象,在序列窗口的工具栏中单击 Proc按钮将显示菜单: 2. 2.2. 2.4 4 季节调整相关操作季节调整相关操作 ( (EViewsEViews软件软件) ) 19 一、一、 X11X11方法方法 X-11法是美国商务部标准的季节调整方法(乘法模型、加法 模型),乘法模型适用于序列可被分解为季节调整后序列(趋势 循环不规则要素项)与季节项的乘积,加法模型适用于序列 可被分解为季节调整后序列与季节项的和。乘法模型只适用于 序列值都为正的情形。 20 如果在季节调整对话框中选择X-11选项,调整后的序 列及因子序列会被自动存入EViews工作文件中,在过程的 结尾X-11简要的输出及错误信息也会在序列窗口中显示。 关于调整后的序列的名字。EViews在原序列名后加SA ,但也可以改变调整后的序列名,这将被存储在工作文件 中。 需要注意,季节调整的观测值的个数是有限制的。X- 11只作用于含季节数据的序列,需要至少4整年的数据,最 多能调整20年的月度数据及30年的季度数据。 21 图图2.1 2.1 社会消费品零售总额的社会消费品零售总额的TCI TCI 序列序列 ( (季节调整后序列季节调整后序列) ) 22 图图2.2 2.2 社会消费品零售总额的社会消费品零售总额的原序列原序列( (蓝线蓝线) )和和 季节调整后序列季节调整后序列 ( (TCI TCI 序列序列 , , 红线红线) ) 23 二、二、Census X12Census X12方法 方法 EViews是将美国国势调查局的X12季节调整程序直接 安装到EViews子目录中,建立了一个接口程序。 EViews进 行季节调整时将执行以下步骤: 1给出一个被调整序列的说明文件和数据文件; 2利用给定的信息执行X12程序; 3返回一个输出文件,将调整后的结果存在EViews工 作文件中。 X12的EViews接口菜单只是一个简短的描述,EViews 还提供了一些菜单不能实现的接口功能,更一般的命令接口 程序。 24 调用X12季节调整过程,在序列窗口选择Procs/Seasonal Adjustment / Census X12,打开一个对话框: X12方法有5种选择框,下面分别介绍。25 1. 1. 季节调整选择季节调整选择( (Seasonal Seasonal AjustmentAjustment Option Option) ) X11X11方法方法(X11 MethodX11 Method) 这一部分指定季节调整分解的形式:乘法;加法;伪加 法(此形式必须伴随ARIMA说明);对数加法。注意乘法 、伪加法和对数加法不允许有零和负数。 季节滤波季节滤波(Seasonal Filter)(Seasonal Filter) 当估计季节因子时,允许选择季节移动平均滤波(月别 移动平均项数),缺省是X12自动确定。近似地可选择(X11 default)缺省选择。需要注意如果序列短于20年,X12不允许 指定315的季节滤波。 26 存调整后的分量序列名存调整后的分量序列名( (Component Series to saveComponent Series to save) X12将被调整的序列名作为缺省列在Base name框中, 可以改变序列名。在下面的多选钮中选择要保存的季节调整 后分量序列,X12将加上相应的后缀存在工作文件中: 最终的季节调整后序列(SA); 最终的季节因子(SF); 最终的趋势循环序列(TC); 最终的不规则要素分量(IR); 季节/贸易日因子(D16); 假日/贸易日因子(D18); 趋势滤波趋势滤波(Trend Filter (Henderson)Trend Filter (Henderson)) 当估计趋势循环分量时,允许指定亨德松移动平均的 项数,可以输入大于1和小于等于101的奇数,缺省是由X12 自动选择。 27 例例2.1a 2.1a 利用利用X12X12加法模型进行季节调整加法模型进行季节调整 图图2.3a 2.3a 社会消费品零售总额原序列社会消费品零售总额原序列 图图2.3b 2.3b 社会消费品零售总额的 社会消费品零售总额的TCI TCI 序列序列 图图2.3c 2.3c 社会消费品零售总额的社会消费品零售总额的TCTC序列 序列 28 图图2.3d 2.3d 社会消费品零售总额 社会消费品零售总额 I I 序列序列 图图2.3e 2.3e 社会消费品零售总额的社会消费品零售总额的 S S 序列序列 29 例例2.1b 2.1b 利用利用X12X12乘法模型进行季节调整乘法模型进行季节调整 图图2.4a 2.4a 工业总产值原序列工业总产值原序列 图图2.4b 2.4b 工业总产值的工业总产值的TCI TCI 序列序列 图图2.4c 2.4c 工业总产值的工业总产值的TCTC序列序列 30 图图2.4d 2.4d 工业总产值的工业总产值的 I I 序列序列 图 图2.4e 2.4e 工业总产值的工业总产值的 S S 序列序列 31 X12方法是基于移动平均法的季节调整方法。它的一个 主要缺点是在进行季节调整时,需要在原序列的两端补欠项 ,如果补欠项的方法不当,就会造成信息损失。X12 - ARIMA方法是由X12方法和时间序列模型组合而成的季节调 整方法。通过用ARIMA模型 (autoregressive integrated moving Average) 延长原序列,弥补了移动平均法末端项补欠 值的问题。 建立ARIMA(p, d, q)模型,需要确定模型的参数,包括单 整阶数d;自回归模型(AR)的延迟阶数p;动平均模型(MA)的 延迟阶数q。也可以在模型中指定一些外生回归因子,建立 ARIMAX模型。对于时间序列中的一些确定性的影响(如节 假日和贸易日影响),应在季节调整之前去掉。 2. 2. ARIMAARIMA选择选择( (ARIMA OptionARIMA Option) 32 点击ARIMA Option标签,可出现下列对话框: X12允许在季节调 整前对被调整序列建 立一个合适的ARIMA 模型。 33 (1) (1) 数据转换(数据转换(Data TransformationData Transformation) 在配备一个合适的ARMA模型之前允许转换序列: (1) 缺省是不转换; (2) Auto选择是根据计算出来的AIC准则自动确定是不 做转换还是进行对数转换; (3) Logistic选择将序列 y 转换为 log(y/(1-y), y序列的 值要求在0和1之间; (4) Box-Cox power选择要求提供一个参数 ,做下列 转换: 34 (2)(2) ARIMAARIMA说明说明(ARIMA Spec) (ARIMA Spec) 允许在2种不同的方法中选择ARIMA模型。 Specify in-line Specify in-line 选择选择 要求提供ARIMA模型阶数的说明(p d q)(P D Q) p 非季节的AR阶数 d 非季节的差分阶数 q 非季节的MA阶数 P 季节AR阶数 D 季节差分阶数 Q 季节MA阶数 35 缺省的指定是“(0 1 1)(0 1 1)”是指季节的IMA模型: (2.5.2) L是滞后算子,这里季节差分是指 (1Ls )yt = yt yts ,季度数 据时s =4;月度数据时s =12。下面是一些例子: (1 0 0) (0 1 1) (1 0 1)(1 0 0) 注意在模型中总的AR、MA、和差分的系数不超过25;AR 或MA参数的最大延迟为24;在ARIMA因子中的最大差分阶数 不超过3。 36 Select from file Select from file 选择选择 X12将从一个外部文件提供的说明集合中选择ARIMA模型 。EViews将利用一个包含一系列缺省模型指定说明的文件( X12A.MDL): (0 1 1)(0 1 1) * (0 1 2)(0 1 1) X (2 1 0)(0 1 1) X (0 2 2)(0 1 1) X (2 1 2)(0 1 1) 缺省说明用“*”表示,除最后一个外,中间的用“X”结尾。 有2个选择: Select best 检验列表中的所有模型,选一个最小预测误差 的模型,缺省是第一个模型。 Select by out-of-sample-fit 对模型的评价用外部样本误差 ,缺省是用内部样本预测误差。 37 (3) (3) 回归因子选择(回归因子选择(RegressorsRegressors) 允许在ARIMA模型中指定一些外生回归因子,利用多 选钮可选择常数项,或季节虚拟变量,事先定义的回归因子 可以捕捉贸易日和节假日的影响。 38 由每天经济活动的总和组成的月度时间序列受该月各 周的影响,这种影响称为贸易日影响(或周工作日影响) 。例如,对于零售业在每周的星期一至星期五的销售额比 该周的星期六、星期日要少得多。因此,在某月如果多出 的星期天数是一周的前五天,那么该月份销售额将较低; 如果多出的星期天数是一周的星期六、星期日,那么该月 份销售额将较高。又如,在流量序列中平均每天的影响将 产生“月长度”影响。因为在每年中二月份的长度是不相同 的,所以这种影响不可能完全被季节因素承受。二月份残 留的影响被称为润年影响。 3. 3. 贸易日和节假日影响贸易日和节假日影响 (1 1)贸易日影响)贸易日影响 39 Young(1965)讨论了浮动贸易日的影响,Cleveland and Grupe(1983)讨论了固定贸易日的影响。贸易日影响和季节 影响一样使得比较各月的序列值变得困难,而且不利于研究 序列间的相互影响。由于这个原因,当贸易日影响的估计在 统计上显著时,通常在季节调整之前先把贸易日的影响从序 列中剔除。在调整的内容中,形成了又一个分解要素:贸易 日要素 D。 在X12季节调整中,假设贸易日影响要素包含在不规则 要素中,即不规则要素的形式是 ID,假设已从原序列 Y 中 分解出 ID。然后用回归分析求出星期一,星期二, 星期日的相应权重,从而可以将 ID 分解为真正的不规则要 素 I 和贸易日要素 D。 40 美国的圣诞节、复活节及感恩节等节假日对经济时间序 列也会产生影响。例如,圣诞节的影响可以增加当周或前一 周商品的零售额,或者是降低特定工厂在圣诞节前几天的产 量。在X12方法中,贸易日和节假日影响可以从不规则要素 中同时估计得到。在X12方法中,可以对不规则要素建立 ARIMAX模型,包括贸易日和节假日影响的回归变量,而且 还可以指明奇异值的影响,并在估计其他回归影响的同时消 除它们。注意EViews中的节假日调整只针对美国,不能应用 于其他国家。 (2 2)节假日影响的调整)节假日影响的调整 41 可以在进行季节 调整和利用ARIMA模 型得到用于季节调整 的向前/向后预测值之 前,先去掉确定性的 影响(例如节假日和 贸易日影响)。首先 要选择: (Ajustment Option) 是否进行这项调整? ,确定在那一个步骤 里调整:在ARIMA步 骤,还是X-11步骤? 贸易日和节假日影响操作贸易日和节假日影响操作 42 Trading Day Effects消除贸易日影响有2种选择,依赖于 序列是流量序列还是存量序列(诸如存货)。对于流量序列还 有2种选择,是对周工作日影响进行调整还是对仅对周日-周末 影响进行调整。存量序列仅对月度序列进行调整,需给出被观 测序列的月天数。 Holiday effects 仅对流量序列做节假日调整。对每一个节 日,必须提供一个数,是到这个节日之前影响的持续天数。 Easter 复活节 Labor 美国、加拿大的劳工节,九月第一个星期一 Thanksgiving 感恩节(在美国为11月第4个星期4;加拿 大为10月第2个星期1) Christmas 圣诞节 注意这些节日只针对美国,不能应用于其他国家。 43 外部影响调整包括附加的外部冲击(addtive outlier,AO) 和水平变换(level shift,LS)。附加的外部冲击(AO)调整是指 对序列中存在的奇异点数据进行调整,水平变换(LS)是指对 水平上发生突然变化的序列的处理。 4. 4. 外部影响外部影响(Outlier Effects)(Outlier Effects) 图图2.5 2.5 经济时间序列水平变换示意图经济时间序列水平变换示意图 44 通过对ARIMAX模型中的回归方程添加外部冲击和水平变 换回归变量,可以处理奇异点数据和在水平上发生突然变化的 序列。在对序列进行预调整的同时得到外部影响调整是X12- ARIMA模型的特殊能力。 在奇异点t0的外部冲击变量: (2.2.26) 在水平位移点t0的水平变换变量: (2.2.27) 45 外部影响操作外部影响操作 外部影响调整也是分别在ARIMA步骤和X11步骤中进行 。然而,必须在X11步骤中作了贸易日/节日调整,才能在 X11步骤中做外部调整,而且只能做附加的外部调整; 46 在ARIMA步骤中有4种外部调整: 附加的外部调整; 水平变换; 暂时的水平变化; 弯道影响。 47 5. 5. 诊断诊断(DiagnosticsDiagnostics) ) 48 这项选择提供了各种诊断: 季节因素的稳定性分析季节因素的稳定性分析(Stability Analysis of Seasonals) Sliding spans 移动间距 检验被调整序列在固定大小的 移动样本上的变化; Historical revisions 历史修正检验被调整序列增加一 个新观测值,即增加一个样本时的变化。 其他诊断其他诊断(Other Diagnostics) 还可以选择显示各种诊断输出。 49 三、三、 移动平均方法移动平均方法 X-11法与移动平均法的最大不同是:X-11法中季节 因子年与年有可能不同,而在移动平均法中,季节因子 被假设为是一样的。 50 TRAMO(Time Series Regression with ARIMA Noise, Missing Observation, and Outliers)用来估计和预测具有缺失 观测值、非平稳ARIMA误差及外部影响的回归模型。它能够 对原序列进行插值,识别和修正几种不同类型的异常值,并 对工作日变化及复活节等特殊回归因素及假定为ARIMA过程 的误差项的参数进行估计。 SEATS(Signal Extraction in ARIMA Time Series)是基 于ARIMA模型来对时间序列中不可观测成分进行估计。 这两个程序往往联合起来使用,先用TRAMO对数据进 行预处理,然后用SEATS将时间序列分解为趋势要素、循环 要素、季节要素及不规则要素4个部分。这两个程序是由 Victor Gomez 和Agustin Maravall 开发的。 四、四、tramotramo/Seats/Seats方法方法 51 tramotramo/Seats/Seats方法操作方法操作 当选择了Pross/Seasonal Adjustment/Tramo Seats 时, EViews执行外部程序,将数据输给外部程序,然后将结果返 回EViews。 52 2.3 2.3 趋势分解趋势分解 本章第2节介绍的季节调整方法可以对经济时间序列进 行分解,但在季节调整方法中,趋势和循环要素视为一体不 能分开。本节专门讨论如何将趋势和循环要素进行分解的方 法。测定长期趋势有多种方法,比较常用的方法有回归分析 方法、移动平均法、阶段平均法(phase average,PA方法)、 HP滤波方法和频谱滤波方法(frequency (band-pass) filer, BP滤波)。本节主要介绍HP滤波方法和BP滤波方法。 53 2.3.1 2.3.1 HodrickHodrick-Prescott-Prescott(HPHP)滤波滤波 在宏观经济学中,人们非常关心序列组成成分中的长期 趋势,Hodrick-Prescott滤波是被广泛使用的一种方法。该 方法在Hodrick and Prescott(1980) 分析战后美国经济周期的 论文中首次使用。我们简要介绍这种方法的原理。 设Yt是包含趋势成分和波动成分的经济时间序列,YtT是 其中含有的趋势成分, YtC是其中含有的波动成分。则 (2.3.1) 计算HP滤波就是从Yt中将YtT 分离出来 。 54 一般地,时间序列Yt中的不可观测部分趋势YtT常被定 义为下面最小化问题的解: (2.3.2) 其中:c(L)是延迟算子多项式 (2.3.3) 将式(2.3.3)代入式(2.3.2),则HP滤波的问题就是使下面损 失函数最小,即 (2.3.4) 55 最小化问题用c(L)YtT2 来调整趋势的变化,并随着 的增 大而增大。这里存在一个权衡问题,要在趋势要素对实际序列 的跟踪程度和趋势光滑度之间作一个选择。 = 0 时,满足最小 化问题的趋势等于序列Yt; 增加时,估计趋势中的变化总数 相对于序列中的变化减少,即 越大,估计趋势越光滑; 趋 于无穷大时,估计趋势将接近线性函数。一般经验地, 的取 值如下: 56 HP滤波的运用比较灵活,它不象阶段平均法那 样依赖于经济周期峰和谷的确定。它把经济周期看 成宏观经济波动对某些缓慢变动路径的偏离,这种 路径在期间内单调地增长,所以称之为趋势。HP滤 波增大了经济周期的频率,使周期波动减弱。 57 使用Hodrick-Prescott滤波来平滑序列,选择Procs/ Hodrick Prescott Filter出现下面的HP滤波对话框: 首先对平滑后的序列给一个名字,EViews将默认一个名字,也可 填入一个新的名字。然后给定平滑参数的值,年度数据取100,季度和月 度数据分别取1600和14400。不允许填入非整数的数据。点击OK后, EViews与原序列一起显示处理后的序列。注意只有包括在当前工作文件 样本区间内的数据才被处理,平滑后序列区间外的数据都为NA。 58 图图2.6 2.6 蓝线表示社会消费品零售总额蓝线表示社会消费品零售总额TCTC序列、序列、 红线表示趋势红线表示趋势T T序列序列 、绿线表示循环、绿线表示循环C C序列序列 例例2.3 2.3 利用利用HPHP滤波方法求经济时间序列的趋势项滤波方法求经济时间序列的趋势项T T 利用HP滤波方法求中国社会消费品零售总额月度时间 序列(1990:12007:6) 59 图图2.7 2.7 蓝线表示社会消费品零售总额、蓝线表示社会消费品零售总额、 红线表示趋势红线表示趋势T T序列序列 60 利用HP滤波方法求中国GDP季度时间序列的趋势项 (1997:12007:6)。 图图2.8 2.8 蓝线表示蓝线表示GDPGDP序列、序列、 红线表示趋势红线表示趋势T T序列、序列、 绿线表示循环绿线表示循环 C C 序列序列 61 图图2.9 2.9 蓝线表示蓝线表示GDPGDP序列、序列、 红线表示趋势红线表示趋势T T序列序列 62 例例2.4 2.4 利用利用HPHP滤波方法求潜在产出和产出缺口滤波方法求潜在产出和产出缺口 设Yt为我国的季度GDP指标,利用季节调整方法将GDP 中的季节因素和不规则因素去掉,得到GDP_TC序列。本例的 潜在产出Y*,即趋势利用HP滤波计算出来的YtT来代替, GDP的循环要素Yt序列由式(2.3.6)计算: (2.3.6) 图图2.6 2.6 红线表示红线表示 GDP_TC GDP_TC 、 蓝线表示趋势序列蓝线表示趋势序列GDP_TGDP_T 图 图2.7 2.7 GDPGDP的循环要素的循环要素 序列序列 63 图2.7显示的GDP的循环要素YtC序列实际上就是围绕趋 势线上下的波动,称为GDP缺口序列。它是一个绝对量的产 出缺口。也可以用相对量表示产出缺口,本例用Gapt来表示相 对产出缺口,可由下式计算得到: (2.3.7 ) 图图2.8 2.8 通货膨胀率通货膨胀率( (红线红线) ) 产出缺口产出缺口Gap (Gap (蓝线蓝线) ) 64 2.3.2 2.3.2 频谱滤波(频谱滤波(BPBP滤波)方法滤波)方法 20世纪以来,利用统计方法特别是时间序列分析方法研 究经济时间序列和经济周期的变动特征得到越来越广泛的应 用。自时间序列分析产生以来,一直存在两种观察、分析和 解释时间序列的方法。第一种是直接分析数据随时间变化的 结构特征,即所谓时域(time domain)分析法,使用的工 具是自相关(或自协方差)函数和差分方程;另一种方法是 把时间序列看成不同谐波的叠加,研究时间序列在频率域( frequency domain)里的结构特征,由于这种分析主要是用 功率谱的概念进行讨论,所以通常称为谱分析。 65 谱分析的基本思想是:把时间序列看作是互不相关 的周期(频率)分量的叠加,通过研究和比较各分量的 周期变化,以充分揭示时间序列的频域结构,掌握其主 要波动特征。因此,在研究时间序列的周期波动方面, 它具有时域方法所无法企及的优势。 66 1. 1. 经济时间序列的功率谱经济时间序列的功率谱 设时间序列数据 X=(x1, x2, , xT),T 为样本长度。谱 分析(spectral analysis)的实质是把时间序列 X 的变动分 解成不同的周期波动之和。考虑时间序列 X 由对应于不同 频率的多个周期变动的和构成,假定存在n个频率1, 2, , n,则 这里,uj ,vj 是随机变量。 (对所有的i,j) (对所有的 i j) 67 可以计算得到 X 的方差: 在这里很有趣的是,X 的方差可以由n个方差j2 的和来 表示。j2是对应于频率j 的循环变动 uj cosj t+vj sinj t 的方 差,表示了对随机过程全变动的贡献,下图是对应于频率的 方差图。 68 频率 和周期 p 有如下关系: 频率 周期 = p = 2 (2.3.8) 时间序列 X 的变动可以分解成各种不同频率波动的叠 加和,根据哪种频率的波动具有更大的贡献率来解释 X 的 周期波动的成分,这就是谱分析(频率分析)名称的缘由。 这就是说当具有各种周期的无数个波包含于景气变动中时, 看看哪个周期(频率)的波强烈地表现现实景气变动。谱分析 中的核心概念是功率谱密度函数(简称功率谱),它集中反 映了时间序列中不同频率分量对功率或方差的贡献程度。 69 (1 1)白噪音的功率谱)白噪音的功率谱 在随机过程ut是白噪音的情形,白噪音的功率谱 f () 可 由下式表示 (2.3.9) 其中: 2是ut的方差。如图所示,白噪音的功率谱是水平的。 因此,可知白噪音的功率谱的所有频率是具有同一权重的随机 过程。图的横轴为频率,频率下面是对应的周期。在这里,2 是指以2期为周期的周期变动,4是指以4期为一周期的周期变 动。在这个功率谱图中,0,的频率对应的周期从 到2期 ,(由于谱密度函数的对称性,图中只给出0,间的谱图) 。 70 (2 2) 一般随机过程的功率谱一般随机过程的功率谱 (a)(a) (b) (c)(b) (c) 71 2. 2. 频率响应函数频率响应函数 考虑随机过程 xt 的线性变换 (2.3.10) 其中:wj 是确定的权重序列,比如是 xt 的移动平均权重。上 面的变换可以用延迟算子表示为 (2.3.11) 其中: 72 由这种变换构成的延迟多项式被称为线性滤波线性滤波(linear filter) ,或只称为滤波。这样的变换还可以被说成对xt作用了滤波。 由谱分析的知识可知,yt 的功率谱可以表示为 (2.3.12) 其中:fy()和fx()分别是yt和xt的功率谱,关于e-i=cos-isin 的指数函数W(e-i)被定义为: (2.3.13) 其中:i 是满足i2=-1的虚数。W(e-i) 等同于W(L)中的 Lj 用 e-ij 置 换的结果。 73 w()=W(e-i)称为滤波的频率响应函数滤波的频率响应函数(frequency response function)。W(e-i)是复数,它的绝对值 |W(e-i)| 是实数,称为 滤波的增益(gain)。因此,变换后的功率谱给定为实数。进一 步,增益的平方|W(e-i)|2称为滤波的功率传递函数滤波的功率传递函数(power transfer function),或只称为传递函数传递函数。 要想得到理想的滤波,需要无限阶移动平均。实际应用 中,我们必须要用有限项移动平均近似理想的滤波,设截断点 为n,这时的频率响应函数为 74 形如式(2.3.10)的线性变换被称为线性滤波,是因为 通过适当设计权重序列,可以使传递函数 W(e-i)2 在某 些频率区间内等于0或近似等于0。这样根据式(2.3.12)就 可以将输入中所有在这个频率带中的分量“过滤”掉,留 下其他成分。根据被保留下来的频率位于低频处、高频 处或某个中间带上,分别称为低通滤波(low-pass filters ,LP)、高通滤波(high-pass filters,HP)和带通滤波带通滤波 (band-pass filtersband-pass filters,BPBP)。 75 例例2.5 2.5 差分滤波的效果差分滤波的效果 现在设时间序列xt有功率谱fx() 。考虑取差分系列yt (2.3.14 ) 用延迟多项式来表示 (2.3.15) 因此,这个滤波的频率响应函数是 (2.3.16) 76 传递函数由下式给定 (2.3.17) 因此,yt 的功率谱由下式给定 (2.3.18) 图图2.11 2.11 差分滤波的图形差分滤波的图形 77 像图2.11(a) 所示的那样,差分滤波的传递函数在 = 0 处取0,然后先缓缓上升,很快就急速上升。如果原来的时 间序列 xt 的功率谱如图2.11 (b),作为差分结果的 yt 的 功率谱就如图2.11(c) 的形状。这样的差分处理,趋势要素 ( = 0的功率)完全被消除,具有大幅度减少长期变动的 效果。 78 4 4带通滤波带通滤波 可以使得在频率带L10), T 是估计 样本的期末值。要开始递归,我们需要 和 的初值。 EView使用原来观测值的均值来开始递归。Bowermen 和OConnell(1979)建议 值在0.01到0.03之间较好 。也可以让EViews估计使一步预测误差平方和最小的 值。 94 2 2. .双指数平滑(一个参数)双指数平滑(一个参数) 这种方法是将单指数平滑进行两次(使用相同的参数) 。适用于有线性趋势的序列。序列 y 的双指数平滑以递归形 式定义为 其中: 0 1, St 是单指数平滑后的序列,Dt 是双指数平滑序 列。 95 双指数平滑的预测如下 最后一个表达式表明双指数平滑的预测有线性趋势,截距 为 2ST DT ,斜率为 (ST D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论