免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学实小校区 TEL:87530008高二数学期中考知识点归纳资料第一章 解三角形1、三角形的性质:.A+B+C=, , .在中, c , c ; AB, ABcosAcosB, a b AB .若为锐角,则,B+C ,A+C ; ,2、正弦定理与余弦定理: .正弦定理: (2R为外接圆的直径) 、 (边化角)、 、 (角化边) 面积公式: .余弦定理:、 、 (角化边)3、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式: . ,数列是定义域为N的函数,当n依次取1,2,时的一列函数值 . 的求法:i.归纳法ii. 若,则不分段;若,则分段iii. 若,则可设解得m,得等比数列iv. 若,先求,再构造方程组:得到关于和的递推关系式例如:先求,再构造方程组:(下减上)2.等差数列: 定义:=(常数),证明数列是等差数列的重要工具。 通项: ,时,为关于n的一次函数;0时,为单调递增数列;0时,为单调递减数列。 前n项和: ,时,是关于n的不含常数项的一元二次函数,反之也成立。 性质:i. (m+n=p+q) ii. 若为等差数列,则,仍为等差数列。 iii. 若为等差数列,则,仍为等差数列。 iv 若A为a,b的等差中项,则有。3.等比数列: 定义: (常数),是证明数列是等比数列的重要工具。 通项: (q=1时为常数列)。.前n项和, ,需特别注意,公比为字母时要讨论.性质:i. 。ii.,公比为。iii. ,公比为。iv.G为a,b的等比中项,4.数列求和的常用方法:.公式法:如.分组求和法:如,可分别求出,和的和,然后把三部分加起来即可。.错位相减法:如, 两式相减得:,以下略。 .裂项相消法:如, 等。.倒序相加法.例:在1与2之间插入n个数,使这n+2个数成等差数列, 求:,(答案:)第三章 不等式1.不等式的性质: 不等式的传递性: 不等式的可加性:推论: 不等式的可乘性: 不等式的可乘方性:2.一元二次不等式及其解法:.注重三者之间的密切联系。 如:0的解为:x, 则0的解为; 函数的图像开口向下,且与x轴交于点,。对于函数,一看开口方向,二看对称轴,从而确定其单调区间等。.注意二次函数根的分布及其应用. 如:若方程的一个根在(0,1)上,另一个根在(4,5)上,则有0且0且0且03.不等式的应用:基本不等式: 当a0,b0且是定值时,a+b有最小值;当a0,b0且a+b为定值时,ab有最大值。简单的线性规划:表示直线的右方区域.表示直线的左方区域解决简单的线性规划问题的基本步骤是: .找出所有的线性约束条件。 .确立目标函数。 .画可行域,找最优点,得最优解。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山西省太原市单招职业倾向性测试题库及完整答案详解1套
- 2026年江西信息应用职业技术学院单招职业倾向性测试题库及参考答案详解1套
- 2026年百色职业学院单招职业技能测试题库及参考答案详解
- 2026年厦门东海职业技术学院单招职业适应性测试题库及参考答案详解1套
- 2026年安徽工商职业学院单招职业适应性测试题库含答案详解
- 2026年山东省济宁市单招职业倾向性考试题库及答案详解1套
- 2026年淮北职业技术学院单招职业倾向性测试题库带答案详解
- 2026年漳州卫生职业学院单招职业适应性测试题库参考答案详解
- 2026年山东畜牧兽医职业学院单招职业倾向性考试题库及完整答案详解1套
- 健康课件制作
- 《资治通鉴》导读学习通超星期末考试答案章节答案2024年
- 职业院校“课程育人、岗课赛证、数字赋能”新型教材建设与管理的路径研究
- 2024年新苏教版四年级上册科学全册知识点(复习资料)
- 《设备买卖合同模板》
- 《化妆品原料》课件-其他油脂
- 血透室应急预案(完整版)
- 工程欠款起诉书范本
- 体育学院运动康复与健康专业教学计划
- 2023年广告制作验收报告(5篇)
- GA 1814.3-2023铁路系统反恐怖防范要求第3部分:运营线路
- 食品营养学(暨南大学)智慧树知到答案章节测试2023年
评论
0/150
提交评论