高中数学课时达标训练十九新人教A版.docx_第1页
高中数学课时达标训练十九新人教A版.docx_第2页
高中数学课时达标训练十九新人教A版.docx_第3页
高中数学课时达标训练十九新人教A版.docx_第4页
高中数学课时达标训练十九新人教A版.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时达标训练(十九)即时达标对点练题组1面积、体积的最值问题1如果圆柱轴截面的周长l为定值,则体积的最大值为()A. B.C. D.2用边长为48 cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒所做的铁盒容积最大时,在四角截去的正方形的边长为()A6 cm B8 cm C10 cm D12 cm题组2成本最低(费用最省)问题3做一个容积为256 m3的方底无盖水箱,所用材料最省时,它的高为()A6 m B8 m C4 m D2 m4某公司一年购买某种货物2 000吨,每次都购买x吨,运费为4万元/次,一年的总存储费为x2万元,要使一年的总运费与总存储费用之和最小,则x_5甲、乙两地相距400 千米,汽车从甲地匀速行驶到乙地,速度不得超过100 千米/时,已知该汽车每小时的运输成本P(元)关于速度v(千米/时)的函数是Pv4v315v,(1)求全程运输成本Q(元)关于速度v的函数关系式;(2)为使全程运输成本最少,汽车应以多大的速度行驶?并求此时运输成本的最小值题组3利润最大问题6已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获取最大年利润的年产量为()A13万件 B11万件 C9万件 D7万件7某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p元,销售量为Q件,则销售量Q与零售价p有如下关系:Q8 300170pp2.则最大毛利润为(毛利润销售收入进货支出)()A30 元 B60 元C28 000 元 D23 000 元8某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k(k0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去若存款利率为x(x(0,0.048),为使银行获得最大收益,则存款利率应定为_9某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交4元的管理费,预计当每件产品的售价为x元(8x11)时,一年的销售量为(12x)2万件(1)求分公司一年的利润L(万元)与每件产品的售价x之间的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值能力提升综合练1将8分为两个非负数之和,使两个非负数的立方和最小,则应分为()A2和6 B4和4C3和5 D以上都不对2设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为()A. B. C. D23某厂要围建一个面积为512 m2的矩形堆料场,一边可以利用原有的墙壁,其他三边要砌新墙,当砌新墙所用的材料最省时,堆料场的长和宽分别为()A32 m,16 m B30 m,15 mC40 m,20 m D36 m,18 m4某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x(0x390)的关系是R(x)400x(0x390),则当总利润最大时,每年生产的产品单位数是()A150 B200 C250 D3005要做一个圆锥形的漏斗,其母线长为20 cm,要使其体积最大,则高为_cm.6如图,内接于抛物线y1x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是_7某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品根据经验知道,每台机器产生的次品数P(万件)与每台机器的日产量x(万件)(4x12)之间满足关系:P 0.1x23.2 ln x3.已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元(利润盈利亏损)(1)试将该工厂每天生产这种元件所获得的利润y(万元)表示为x的函数;(2)当每台机器的日产量x(万件)为多少时所获得的利润最大,最大利润为多少?8某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l1,l2所在的直线分别为y,x轴,建立平面直角坐标系xOy,假设曲线C符合函数y(其中a,b为常数)模型(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.请写出公路l长度的函数解析式f(t),并写出其定义域;当t为何值时,公路l的长度最短?求出最短长度答 案即时达标对点练1. 解析:选A设圆柱的底面半径为r,高为h,体积为V,则4r2hl,h,Vr2hr2l2r3.则Vlr6r2,令V0,得r0或r,而r0,r是其唯一的极值点当r时,V取得最大值,最大值为.2. 解析:选B设截去的小正方形的边长为x cm,铁盒的容积V cm3.由题意,得Vx(482x)2(0x0;当x(8,24)时,V0.当x8时,V取得最大值3. 解析: 选C设底面边长为x m,高为h m,则有x2h256,所以h.所用材料的面积设为S m2,则有S4xhx24xx2x2.S2x,令S0,得x8,因此h4(m)4. 解析:设该公司一年内总共购买n次货物,则n,总运费与总存储费之和f(x)4nx2x2,令f(x)x0,解得x20.且当0x20时f(x)20时f(x)0,故x20时,f(x)最小答案:205. 解:(1)QP400v26 000(0v100)(2)Q5v,令Q0,则v0(舍去)或v80,当0v80时,Q0;当800,v80千米/时时,全程运输成本取得极小值,即最小值,且QminQ(80)(元)6. 解析:选C因为yx281,所以当(9,)时,y0,所以函数yx381x234在(9,)上单调递减,在(0,9)上单调递增,所以x9时函数取最大值7. 解析:选D设毛利润为L(p),由题意知L(p)pQ20QQ(p20)(8 300170pp2)(p20)p3150p211 700p166 000,所以L(p)3p2300p11 700.令L(p)0,解得p30或p130(舍去)此时,L(30)23 000.因为在p30附近的左侧L(p)0,右侧L(p)0,所以L(30)是极大值,根据实际问题的意义知,L(30)是最大值,即零售价定为每件30 元时,最大毛利润为23 000元8. 解析:存款利率为x,依题意:存款量是kx2,银行应支付的利息是kx3,贷款的收益是0.048kx2,x(0,0.048)所以银行的收益是y0.048kx2kx3(0x0.048),由于y0.096kx3kx2,令y0得x0.032或x0(舍去),又当0x0;当0.032x0.048时,y0;x时,L(x)0,所以当x时,L(x)在8,11上取到极大值,也是最大值,L(万元)故当每件售价为元时,公司一年的利润L最大,最大利润是万元能力提升综合练1. 解析:选B设一个数为x,则另一个数为8x,则其立方和yx3(8x)383192x24x2(0x8),y48x192.令y0,即48x1920,解得x4.当0x4时,y0;当40.所以当x4时,y最小2. 解析:选C设底面边长为x,高为h,x2hV,h.S表2x23xhx2,S(x)x,令S(x)0可得x,x34V,x.当0x时,S(x)时,S(x)0,当x时,S(x)最小3. 解析:选A设建堆料场与原墙平行的一边边长为x m,其他两边边长为y m,则xy512,堆料场的周长lx2y2y(y0),令l20,解得y16(另一负根舍去),当0y16时,l16时,l0,所以当y16时,函数取得极小值,也就是最小值,此时x32.4. 解析:选D由题意可得总利润P(x)300x20 000,0x390,由P(x)3000,得x300.当0x0;当300x390时,P(x)0,所以当x300时,P(x)最大5. 解析:设高为h,则底面半径r,0h20,Vr2h(400h2)hhh3.由Vh20得h2,h或h(舍去),因为当0h0,当h时,V0,f(x)是递增的,x时,f(x)0,f(x)是递减的,当x时,f(x)取最大值.答案:7. 解:(1)由题意得,所获得的利润为y102(xP)P20x3x296ln x90(4x12)(2)由(1)知,y.当4x6时,y0,函数在4,6)上为增函数;当6x12时,y0,函数在(6,12上为减函数,所以当x6时,函数取得极大值,且为最大值,最大利润为y20636296ln 69096ln 678(万元)故当每台机器的日产量为6万件时所获得的利润最大,最大利润为(96ln 678)万元8. 解:(1)由题意知,M点的坐标为(5,40),N点的坐标为(20,2.5),代入曲线C的方程y,可得解得(2)由(1)知曲线C的方程为y(5x20),y,所以yxt即为l的斜率又当xt时,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论