高考数学复习椭圆双曲线抛物线双基过关检测理.docx_第1页
高考数学复习椭圆双曲线抛物线双基过关检测理.docx_第2页
高考数学复习椭圆双曲线抛物线双基过关检测理.docx_第3页
高考数学复习椭圆双曲线抛物线双基过关检测理.docx_第4页
高考数学复习椭圆双曲线抛物线双基过关检测理.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“椭圆、双曲线、抛物线”双基过关检测一、选择题1以x轴为对称轴,原点为顶点的抛物线上的一点P(1,m)到焦点的距离为3,则抛物线的方程是()Ay4x2By8x2Cy24x Dy28x解析:选D设抛物线的方程为y22px,则由抛物线的定义知13,即p4,所以抛物线方程为y28x.2(2017济南第一中学检测)抛物线y4x2的焦点坐标是()A. B(1,0)C. D(0,1)解析:选C抛物线的标准方程为x2y,则p,所以焦点坐标是.3(2017贵州七校联考)已知双曲线x2my21的虚轴长是实轴长的两倍,则实数m的值是()A4 BC. D4解析:选B由双曲线的方程知a1,b ,又b2a,所以 2,解得m,故选B.4已知椭圆1(m0)的左焦点为F1(4,0),则m()A2 B3C4 D9解析:选B由左焦点为F1(4,0)知c4.又a5,25m216,解得m3或3.又m0,故m3.5(2016甘肃张掖一诊)过抛物线y24x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1x26,则|PQ|()A9 B8C7 D6解析:选B抛物线y24x的焦点为F(1,0),准线方程为x1.根据题意可得,|PQ|PF|QF|x11x21x1x228.故选B.6已知椭圆C:1(ab0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点,若AF1B的周长为4,则C的方程为()A.1 B.y21C.1 D.1解析:选A由椭圆的性质知|AF1|AF2|2a,|BF1|BF2|2a,又AF1B的周长|AF1|AF2|BF1|BF2|4,a.又e,c1.b2a2c22,椭圆的方程为1,故选A.7椭圆ax2by21与直线y1x交于A,B两点,过原点与线段AB中点的直线的斜率为,则()A. B.C. D.解析:选A设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),结合题意,由点差法得,1,.8已知双曲线1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是()A. B.C. D.解析:选C由题意知F(4,0),双曲线的两条渐近线方程为yx.当过点F的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.二、填空题9(2016北京高考)已知双曲线1(a0,b0)的一条渐近线为2xy0,一个焦点为(,0),则a_,b_.解析:因为双曲线1(a0,b0)的一条渐近线为2xy0,即y2x,所以2.又双曲线的一个焦点为(,0),所以a2b25.由得a1,b2.答案:1210(2016山东高考)已知双曲线E:1(a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|3|BC|,则E的离心率是_解析:如图,由题意知|AB|,|BC|2c.又2|AB|3|BC|,232c,即2b23ac,2(c2a2)3ac,两边同除以a2并整理得2e23e20,解得e2(负值舍去)答案:211已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_解析:设P(x,y),由题意知c2a2b2541,所以c1,则F1(1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y1,把y1代入1,得x,又x0,所以x,P点坐标为或.答案:或12(2017西安中学模拟)如图,过抛物线yx2的焦点F的直线l与抛物线和圆x2(y1)21交于A,B,C,D四点,则_.解析:不妨设直线AB的方程为y1,联立解得x2,则A(2,1),D(2,1),因为B(1,1),C(1,1),所以(1,0),(1,0),所以1.答案:1三、解答题13(2017揭阳一中期末)已知椭圆E:1(ab0)的离心率为,右焦点为F(1,0)(1)求椭圆E的标准方程;(2)设点O为坐标原点,过点F作直线l与椭圆E交于M,N两点,若OMON,求直线l的方程解:(1)依题意可得解得a,b1,所以椭圆E的标准方程为y21.(2)设M(x1,y1),N(x2,y2),当MN垂直于x轴时,直线l的方程为x1,不符合题意;当MN不垂直于x轴时,设直线l的方程为yk(x1)联立得方程组消去y,整理得(12k2)x24k2x2(k21)0,所以x1x2,x1x2.所以y1y2k2x1x2(x1x2)1.因为OMON,所以0,所以x1x2y1y20,所以k,即直线l的方程为y(x1)14.已知点F为抛物线E:y22px(p0)的焦点,点A(2,m)在抛物线E上,且|AF|3.(1)求抛物线E的方程;(2)已知点G(1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切解:(1)由抛物线的定义得|AF|2.因为|AF|3,即23,解得p2,所以抛物线E的方程为y24x.(2)因为点A(2,m)在抛物线E:y24x上,所以m2.由抛物线的对称性,不妨设A(2,2)由A(2,2),F(1,0)可得直线AF的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论