




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1 回归分析的基本思想及其初步应用线性回归模型提出问题问题1:由数学必修3的知识可知,相关关系中自变量和因变量的关系是确定的吗?提示:不是问题2:利用线性回归方程求出的函数值一定是真实值吗?提示:不一定导入新知1回归分析(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系,即自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫做相关关系(2)由数学必修3的知识可知,回归分析是对具有线性相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报2线性回归模型(1)线性回归模型ybxae,其中a和 b是模型的未知参数,e称为随机误差自变量x称为解释变量,因变量y称为预报变量(2)在回归方程x中,.其中i,i, (,)称为样本点的中心化解疑难对线性回归方程的理解(1)回归直线方程x一定经过点(,)我们把(,)称为样本点的中心,因此,回归直线必过样本点的中心(2)线性回归方程x中的截距和斜率都是通过估计而得来的,存在着误差,这种误差可能导致预测结果的偏差(3)当0时,变量y与x具有正的线性相关关系;当0)的周围,则ln yln c1c2x,于是令zln y,则x123456z1.792.483.223.894.555.25画出相应的散点图(图略),可知变换后的样本点分布在一条直线附近,因此可用线性回归方程来拟合,由表中数据得到线性回归方程为0.69x1.115,则有e0.69x1.115.典例某种产品的广告费支出x(单元:万元)与销售额y(单位:万元)之间有下表关系:x24568y3040605070y与x的线性回归方程为6.5x17.5,当广告费支出5万元时,随机误差的效应(残差)为()A10B20C30 D40解析因为y与x的线性回归方程为6.5x17.5,当x5时,50,当广告费支出5万元时,由表格得y60,故随机误差的效应(残差)为605010.答案A易错防范1对残差i不理解,误认为iiyixiyi,i1,2,n.2残差平方和越小,说明模型的拟合效果就越好成功破障已知方程0.85x82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,的单位是kg,那么针对某个体(160,53)的残差是_解析:把x160代入0.85x82.71,得0.8516082.7153.29,所以残差y5353.290.29.答案:0.29随堂即时演练1(湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:y与x负相关且2.347x6.423;y与x负相关且3.476x5.648; y与x正相关且5.437x8.493;y与x正相关且4.326x4.578.其中一定不正确的结论的序号是()ABC D解析:选D中y与x负相关而斜率为正,不正确;中y与x正相关而斜率为负,不正确2关于回归分析,下列说法错误的是()A在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定B线性相关系数可以是正的也可以是负的C在回归分析中,如果r21或r1,说明x与y之间完全线性相关D样本相关系数r(1,1)解析:选D样本的相关系数应满足1r1.3在研究气温和热茶销售杯数的关系时,若求得相关指数R20.85,则表明气温解释了_的热茶销售杯数变化,而随机误差贡献了剩余的_,所以气温对热茶销售杯数的效应比随机误差的效应大得多解析:由相关指数R2的意义可知,R20.85表明气温解释了85%,而随机误差贡献了剩余的15%.答案:85%15%4某医院用光电比色计检验尿汞时,得尿汞含量(mg/L)与消光系数计数的结果如下:尿汞含量x246810消光系数y64138205285360若y与x具有线性相关关系,则回归直线方程是_解析:由已知表格中的数据,利用科学计算器进行计算得6,210.4,220,iyi7 790,所以36.95,11.3.所以回归直线方程为11.336.95x.答案:11.336.95x5某工厂为了对新研究的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元88.28.48.68.89销量y/件908483807568(1)求回归直线方程x,其中20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解:(1)(88.28.48.68.89)8.5,(908483807568)80,从而2080208.5250,故20x250.(2)由题意知,工厂获得利润z(x4)y20x2330x1 000202361.25,所以当x8.25时,zmax361.25(元)即当该产品的单价定为8.25元时,工厂获得最大利润课时达标检测一、选择题1(重庆高考)已知变量x与y正相关,且由观测数据算得样本平均数3,3.5,则由该观测数据算得的线性回归方程可能为()A.0.4x2.3 B.2x2.4C.2x9.5 D.0.3x4.4解析:选A依题意知,相应的回归直线的斜率应为正,排除C、D.且直线必过点(3,3.5),代入A、B得A正确2甲、乙、丙、丁四位同学在建立变量x,y的回归模型时,分别选择了4种不同模型,计算可得它们的相关指数R2分别如下表:甲乙丙丁R20.980.780.500.85建立的回归模型拟合效果最好的同学是()A甲 B乙C丙 D丁解析:选A相关指数R2越大,表示回归模型拟合效果越好3设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为0.85x85.71.则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:选D回归方程中x的系数为0.850,因此y与x具有正的线性相关关系,A正确;由回归方程系数的意义可知回归直线过样本点的中心(,),B正确;依据回归方程中的含义可知,x每变化1个单位,相应变化约0.85个单位,C正确;用回归方程对总体进行估计不能得到肯定结论,故D不正确4甲、乙、丙、丁4位同学各自对A,B两变量做回归分析,分别得到散点图与残差平方和(yii)2,如下表:甲乙丙丁散点图残差平方和115106124103哪位同学的试验结果体现拟合A,B两变量关系的模型拟合精度高?()A甲 B乙C丙 D丁解析:选D从题中的散点图上来看,丁同学的散点图中的点更加近似在一条直线附近;从残差平方和来看,丁同学的最小,说明拟合精度最高5(福建高考)已知x与y之间的几组数据如下表: x123456 y021334假设根据上表数据所得线性回归直线方程为x,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()A.b,a B.b,aC.a D.b,a解析:选C由两组数据(1,0)和(2,2)可求得直线方程为y2x2,b2,a2.而利用线性回归方程的公式与已知表格中的数据,可求得,所以a.二、填空题6在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线yx1上,则这组样本数据的样本相关系数为_解析:根据样本相关系数的定义可知,当所有样本点都在直线上时,相关系数为1.答案:17某咖啡厅为了了解热饮的销售量y(个)与气温x()之间的关系,随机统计了某4天的销售量与气温,并制作了对照表:气温()1813101销售量(个)24343864由表中数据,得线性回归方程2xa.当气温为4 时,预测销售量约为_解析:(1813101)10,(24343864)40,40210a,a60,当x4时,y2(4)6068.答案:688关于x与y有如下数据:x24568y3040605070为了对x,y两个变量进行统计分析,现有以下两种线性模型:甲:6.5x17.5,乙:7x17,则_(填“甲”或“乙”)模型拟合的效果更好解析:设甲模型的相关指数为R,则R110.845;设乙模型的相关指数为R,则R10.82.因为0.8450.82,即RR,所以甲模型拟合效果更好答案:甲三、解答题9(新课标全国卷)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入附:回归直线的斜率和截距的最小二乘估计公式分别为,.解:(1)由所给数据计算得(1234567)4,(2.93.33.64.44.85.25.9)4.3,(ti)2941014928,(ti)(yi)(3)(1.4)(2)(1)(1)(0.7)00.110.520.931.614,0.5,4.30.542.3,所求回归方程为0.5t2.3.(2)由(1)知,0.50,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元将2015年的年份代号t9代入(1)中的回归方程,得0.592.36.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元10(全国丙卷)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量参考数据:i9.32,iyi40.17, 0.55,2.646.参考公式:相关系数r,回归方程t中斜率和截距的最小二乘估计公式分别为, .解:(1)由折线图中的数据和附注中的参考数据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关爱老人具体活动策划方案
- 服务型公司营销管理方案
- 药品安全宣传培训情况课件
- 薪酬改革方案咨询
- 管理咨询工资方案
- 吴忠聚脲地坪施工方案
- 初二政治考试题目及答案
- 摩登建筑婚礼策划方案设计
- 胃镜室护理工作制度
- 宠物店营销方案海报创意
- 全科医学(副高)高级职称考试题库及答案
- 康复辅助技术咨询师理论知识考核试卷及答案
- 实验室室内质控年度总结
- 房地产精装修工程质量管控措施
- GB/T 46004-2025动物油脂牛油
- 2025年高考【数学】真题及答案(新高考Ⅱ卷)
- 2025至2030年中国花岗岩制品行业市场发展现状及投资策略咨询报告
- 小学生海姆立克急救法
- 创收分配管理办法
- 《房地产估价》课件
- 市政道路管网施工安全文明施工措施
评论
0/150
提交评论