




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知能专练(七) 三角恒等变换与解三角形一、选择题1(2017山东高考)已知cos x,则cos 2x()A B. C D.解析:选Dcos x,cos 2x2cos2x1.2在ABC中,若0tan Atan B1,那么ABC一定是()A锐角三角形 B钝角三角形C直角三角形 D形状不确定解析:选B由0tan Atan B0,tan B0,即A,B为锐角tan(AB)0,即tan(C)tan C0,所以tan C8 Bab(ab)16C6abc12 D12abc24解析:选A因为ABC,由sin 2Asin(ABC)sin(CAB)得sin 2Asin 2Bsin 2C,即sin(AB)(AB)sin (AB)(AB)sin 2C,整理得2sin Ccos(AB)2sin Ccos C2sin Ccos(AB)cos(AB),整理得4sin Asin Bsin C,即sin Asin Bsin C.又Sabsin Cbcsin Acasin B,因此S3a2b2c2sin Asin Bsin Ca2b2c2.由1S2得1a2b2c223,即8abc16,因此选项C,D不一定成立又bca0,因此bc(bc)bca8,即bc(bc)8,选项A一定成立又abc0,因此ab(ab)abc8,即ab(ab)8,显然不能得出ab(ab)16,选项B不一定成立综上所述,选A.二、填空题7(2017全国卷)已知,tan 2,则cos_.解析:,tan 2,sin ,cos ,coscos cossin sin.答案:8(2017杭州模拟)在ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin Bsin Bsin Ccos 2B1.若C,则_.解析:sin Asin Bsin Bsin Ccos 2B1,sin Asin Bsin Bsin C2sin2B.由正弦定理可得abbc2b2,即ac2b,c2ba,C,由余弦定理可得(2ba)2a2b22abcos ,可得5a3b,.答案:9(2017浙江高考)已知ABC,ABAC4,BC2.点D为AB延长线上一点,BD2,连接CD,则BDC的面积是_,cosBDC_.解析:在ABC中,ABAC4,BC2,由余弦定理得cosABC,则sinABCsinCBD,所以SBDCBDBCsinCBD22.因为BDBC2,所以CDBABC,则cosCDB .答案:三、解答题10(2017天津高考)在ABC中,内角A,B,C所对的边分别为a,b,c.已知ab,a5,c6,sin B.(1)求b和sin A的值;(2)求sin的值解:(1)在ABC中,因为ab,故由sin B,可得cos B.由已知及余弦定理,得b2a2c22accos B13,所以b.由正弦定理,得sin A.所以b的值为,sin A的值为.(2)由(1)及ac,得cos A,所以sin 2A2sin Acos A,cos 2A12sin2A.故sinsin 2Acoscos 2Asin.11.(2017福建质检)在ABC中,B,点D在边AB上,BD1,且DADC.(1)若BCD的面积为,求CD;(2)若AC,求DCA.解:(1)因为SBCD,即BCBDsin B,又B,BD1,所以BC4.在BDC中,由余弦定理得CD2BC2BD22BCBDcos B,即CD216124113,解得CD.(2)在ACD中,DADC,可设ADCA,则ADC2,又AC,由正弦定理,得,所以CD.在BDC中,BDC2,BCD2,由正弦定理,得,即,化简得cos sin,于是sinsin.因为0,所以0,2,所以2或2,解得或,故DCA或DCA.12.如图,在等腰直角OPQ中,POQ90,OP2,点M在线段PQ上(1)若OM,求PM的长;(2)若点N在线段MQ上,且MON30,问:当POM取何值时,OMN的面积最小?并求出面积的最小值解:(1)在OMP中,OPM45,OM,OP2,由余弦定理,得OM2OP2MP22OPMPcos 45,即MP24MP30,解得MP1或MP3.(2)设POM,060.在OMP中,由正弦定理,得,所以OM,同理ON
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电器分销合同协议书范本
- 策划赞助合作协议书范本
- 破坏房屋赔偿协议书范本
- 电梯轿厢清洁协议合同书
- 监控质保与售后合同范本
- 驾校学员培训合同协议书
- 项目工程挂靠协议书范本
- 环保投资股东协议书模板
- 煤矿合同续签协议书模板
- 权利质押反担保合同范本
- 外研版八年级上册英语期末复习:阅读理解 刷题练习题30篇(含答案解析)
- 退休延期留用岗位协议书
- 生物安全记录表
- DB34T 1708-2020 电站堵阀检验规程
- 《幼儿园保育教育质量评估指南》引领下的园本教研转向与新生态
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 《老年护理学》考试复习题库(含答案)
- 第1章有理数单元同步练习题 2024-2025学年华东师大版数学七年级上册
- GB/T 29239-2024移动通信设备节能参数和测试方法基站
- 职业技术学校《服装工艺基础》课程标准
- 《Python编程案例教程》全套教学课件
评论
0/150
提交评论