




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
动点直角三角形专题1.已知:如图所示,在平面直角坐标系中,.若点是边上的一个动点(与点不重合),过点作交于点.(1)求点的坐标;(2)当的周长与四边形的周长相等时,求的长;(3)在上是否存在点,使得为等腰直角三角形?若存在,请求出此时的长;若不存在,请说明理由.2.如图,已知线段AB=2,MNAB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE(1)当APB=28时,求B和的度数;(2)求证:AC=AB。(3)在点P的运动过程中当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;记AP与圆的另一个交点为F,将点F绕点D旋转90得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出ACG和DEG的面积之比3.如图1,抛物线经过平行四边形的顶点、,抛物线与轴的另一交点为.经过点的直线l将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线l上方抛物线上一动点,设点的横坐标为t.(1)求抛物线的解析式;(2)当何值时,t的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出t的值;若不存在,说明理由.4.在平面直角坐标系中,抛物线过点,与轴交于点.(1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,求的周长的最小值;(3)在抛物线的对称轴上是否存在点,使是直角三角形?若存在,直接写出点的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,则点的坐标为6.如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第个小三角形的面积为7.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(3,0),点B的坐标为(4,0),连接AC,BC动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒连接PQ(1)填空:b=,c=;(2)在点P,Q运动过程中,APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图,点N的坐标为(,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q恰好落在线段BC上时,请直接写出点Q的坐标8.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.9.如图,抛物线与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E。(1)若为等腰直角三角形,求的值;(2)若对任意,两点总关于原点对称,求点的坐标(用含的式子表示);(3)当点运动到某一位置时,恰好使得,且点为线段的中点,此时对于该抛物线上任意一点总有成立,求实数的最小值10.如图1,抛物线经过平行四边形的顶点、,抛物线与轴的另一交点为.经过点的直线l将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线l上方抛物线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025年)静脉输液输血考试试题(含答案)
- 药房药店新员工入职及岗前培训考试试题含答案
- 无人机基地安保与人员管理方案
- 充电桩系统软件升级与维护方案
- 2025年指甲油行业研究报告及未来行业发展趋势预测
- 2025年倒车镜行业研究报告及未来行业发展趋势预测
- 电池充电时间优化与效率提升方案
- 2025年幼犬狗粮行业研究报告及未来行业发展趋势预测
- 日管控周排查月调度工作机制
- 2025年触控产品行业研究报告及未来行业发展趋势预测
- 神经根型腰椎病课件
- 食品行业质量控制管理制度
- (完整版)康复诊疗指南及规范
- 五年级下册黑布林英语阅读10篇
- 2025届四川省宜宾市叙州区二中生物高一第一学期期末学业水平测试试题含解析
- 检验标本采集手册
- 陆上石油天然气长输管道建设项目安全设施设计编制导则(试行)2015
- 神经系统疾病概述课件
- 新高考背景下2025届高考地理一轮复习备考策略讲座
- 中医海外传播
- 文创产品国内外研究现状综述
评论
0/150
提交评论