


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4.1正弦函数与余弦函数的图像一、教学目标(1)利用单位圆中的三角函数线作出的图象,明确图象的形状;(2)根据关系,作出的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;二、课时1课时三、教学重点正弦函数和余弦函数的图象;四、教学难点将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.五、教具多媒体、实物投影仪六、教学过程思路1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x0,2时,y=sinx的图象. 思路2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象.推进新课新知探究提出问题 问题:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x0,2的精确图象呢?问题:如何得到y=sinx,xR时的图象? 活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x0,2的图象,就很容易得到y=sinx,xR时的图象了. 对问题,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2这一段分成12等份.由于单位圆周长是2,这样就解决了横坐标问题.过O1上的各分点作x轴的垂线,就可以得到对应于0、2等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在0,2上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.图1 对问题,因为终边相同的角有相同的三角函数值,所以函数y=sinx在x2k,2(k+1),kZ且k0上的图象与函数y=sinx在x0,2上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x0,2的图象向左、右平行移动(每次2个单位长度),就可以得到正弦函数y=sinx,xR的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)图2讨论结果:利用正弦线,通过等分单位圆及平移即可得到y=sinx,x0,2的图象.左、右平移,每次2个长度单位即可.提出问题 如何画出余弦函数y=cosx,xR的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗? 活动:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础.讨论结果:把正弦函数y=sinx,xR的图象向左平移个单位长度即可得到余弦函数图象.如图3.图3正弦函数y=sinx,xR的图象和余弦函数y=cosx,xR的图象分别叫做正弦曲线和余弦曲线点.提出问题 问题:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?问题:你能确定余弦函数图象的关键点,并作出它在0,2上的图象吗? 活动:对问题,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在0,2上有五个点起关键作用,只要描出这五个点后,函数y=sinx在0,2上的图象的形状就基本上确定了.这五点如下:(0,0),(,1),(,0),(,-1),(2,0). 因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.对问题,引导学生通过类比,很容易确定在0,2上起关键作用的五个点,并指导学生通过描这五个点作出在0,2上的图象.讨论结果:略.关键点也有五个,它们是:(0,1),(,0),(,-1),(,0),(2,1).讲解范例讲解范例:例1 作下列函数的简图(1)y=1+sinx,x0,2, (2) y=|sinx|, (3)y=sin|x| 例2 用五点法作函数的简图.例3分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合: 八、课堂小结以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.1.怎样利用“周而复始”的特点,把区间0,2上的图象扩展到整个定义域的?2.如何利用图象变换从正弦曲线得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论