红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 2 设函数对一切实数都满足,且方程恰有6个不同的实根,则这6个实根的和为( )A. B. C. D.【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.3 设是虚数单位,则复数在复平面内所对应的点位于( )A第一象限 B第二象限 C第三象限 D第四象限4 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D95 设集合,则( )ABCD6 若等式(2x1)2014=a0+a1x+a2x2+a2014x2014对于一切实数x都成立,则a0+1+a2+a2014=( )ABCD07 将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是( )ABCD8 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD9 在数列中,则该数列中相邻两项的乘积为负数的项是( )A和 B和 C和 D和10在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为()A B C D11若直线上存在点满足约束条件则实数的最大值为 A、 B、 C、 D、12在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD21二、填空题13【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函数,函数,当时,函数g(x)的最大值M与最小值m的差为,则a的值为_.14若x,y满足线性约束条件,则z=2x+4y的最大值为15函数在点处的切线的斜率是 .16定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且f(x)在1,0上是增函数,下面五个关于f(x)的命题中:f(x)是周期函数;f(x) 的图象关于x=1对称;f(x)在0,1上是增函数;f(x)在1,2上为减函数;f(2)=f(0)正确命题的个数是17设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=18已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=三、解答题19已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值20(本小题满分12分)已知椭圆的离心率为,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的动点,且的最小值为-2.(1)求椭圆的标准方程;(2)若过左焦点的直线交椭圆于两点,求的取值范围.21已知命题p:不等式|x1|m1的解集为R,命题q:f(x)=(52m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围 22本小题满分12分如图,在边长为4的菱形中,点、分别在边、上点与点、不重合,沿将翻折到的位置,使平面平面求证:平面;记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长23已知函数且f(1)=2(1)求实数k的值及函数的定义域;(2)判断函数在(1,+)上的单调性,并用定义加以证明24【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,其导函数的图象过点(1)求函数的解析式;(2)设函数,其中m为常数,求函数的最小值红塔区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题2 【答案】A.【解析】,的图象关于直线对称,个实根的和为,故选A.3 【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B4 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题5 【答案】C【解析】送分题,直接考察补集的概念,故选C。6 【答案】B【解析】解法一:,(C为常数),取x=1得,再取x=0得,即得,故选B解法二:,故选B【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用7 【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin2(x)=sin(2x);考察选项不难发现:当x=时,sin(2)=0;(,0)就是函数的一个对称中心坐标故选:D【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型8 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义9 【答案】C【解析】考点:等差数列的通项公式10【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B11【答案】B【解析】如图,当直线经过函数的图象与直线的交点时,函数的图像仅有一个点在可行域内,由,得,12【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B二、填空题13【答案】【解析】,因为在上是增函数,即在上恒成立,则,当时,又,令,则,(1)当时,则,则,(2)当时,则,舍。14【答案】38 【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=23+48=6+32=32,故答案为:3815【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.16【答案】3个 【解析】解:定义在(,+)上的偶函数f(x),f(x)=f(x);f(x+1)=f(x),f(x+1)=f(x),f(x+2)=f(x+1)=f(x),f(x+1)=f(x)即f(x+2)=f(x),f(x+1)=f(x+1),周期为2,对称轴为x=1所以正确,故答案为:3个17【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题18【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或18三、解答题19【答案】 【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m24=0,=(8m)245(4m24)=16m2+80=0解得:m=(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m24=0的两根,由韦达定理可得:x1+x2=,x1x2=,|AB|=2;m=【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题20【答案】(1);(2).【解析】试题解析:(1)根据题意知,即,则,设,当时,则.椭圆的方程为.1111设,则,.,.综上知,.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.21【答案】【解析】解:不等式|x1|m1的解集为R,须m10,即p是真 命题,m1f(x)=(52m)x是减函数,须52m1即q是真命题,m2,由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题 因此,1m2【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键属中档题22【答案】【解析】证明:在菱形中, , 平面平面,平面平面,且平面,平面, 平面,平面设由知,平面, 为三棱锥及四棱锥的高, , , , , 23【答案】 【解析】解:(1)f(1)=1+k=2;k=1,定义域为xR|x0;(2)为增函数;证明:设x1x21,则:=;x1x21;x1x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论