




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.2.2解一元二次方程公式法预习案一、预习目标及范围1.掌握公式法解一元二次方程的推导过程;2.掌握公式法解一元二次方程的公式并能够使用公式法解一元二次方程。范围:自学课本P9-P12,完成练习.二、预习要点1.掌握公式法解一元二次方程的推导过程;2.掌握公式法解一元二次方程的公式并能够使用公式法解一元二次方程。三、预习检测1.什么是配方法?配方法解一元二次方程的一般步骤是什么?2怎样用配方法解形如一般形式ax2+bx+c=0(a0)的一元二次方程?探究案一、合作探究活动内容1:小组合作问题1:用配方法解方程问题2:用配方法解方程活动内容2:典例解析问题1:用配方法解方程:解: a=2, b=5, c= -3, b2-4ac=52-42(-3)=49 x = X1 =-3 X2 =问题2:用公式法解方程 解:方程两边同乘以3, 得 2 x2 -3x-2=0 a=2,b= -3,c= -2.b2-4ac=(-3) 2-42(-2)=25. x = X1 =-2 X2 =-问题3: 用公式法解方程:x2 +3 = 2x a=2,b= -2,c= 3.b2-4ac=(-2) 2-413=0 x = X1 = X2 =例4 解方程: 解:去括号,化简为一般式: a=3,b= -7,c= 8.b2-4ac=(-7) 2-438=-470. 方程没有实数解。活动内容3:知识归纳:叫做一元二次方程ax2+bx+c=0(a0)根的判别式,通常用希腊字母表示它,即一元二次方程根的情况与判别式的关系(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根公式法解一元二次方程一般地,对于一般形式的一元二次方程ax2+bx+c=0(a0),当时,它的两个根分别是,这里,叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法公式法解一元二次方程的一般步骤把方程化成一般形式:ax2+bx+c=0(a0);确定a,b,c的值;求出的值,并判断方程根的情况:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根当时,将a,b,c和的值代入公式(注意符号)二、随堂检测1.一元二次方程x2+2x+4=0的根的情况是 ( ) A.有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根2.方程x2-3x+1=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 没有实数根 D.只有一个实数根3.下列一元一次方程中,有实数根的是 ( ) A.x2-x+1=0 B.x2-2x+3=0 C.x2+x-1=0 D.x2+4=0 4.关于x的方程k2x2+(2k-1)x+1=0有实数根,则下列结论正确的是 ( ) A.当k=1/2时,方程两根互为相反数 B.当k=0时,方程的根是x=-1 C.当k=1时,方程两根互为倒数 D.当k1/4时,方程有实数根5.若关于x的一元二次方程mx2-2x+1=0有实数根,则m的取值范围是 ( ) A.m1 B. m1且m0 C.m1 D. m1且m06.用公式法解下列方程:参考答案预习检测:1.配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法配方法解一元二次方程的一般步骤:(1)移常数项到方程右边;(2)化二次项系数为1;(3)方程两边同时加上一次项系数一半的平方;(4)化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双桥租房合同范本
- 七年级数学应用题考试押题
- 高岭土矿购销合同范本
- 基于Java的教师听课评价系统的设计与实现
- 农场亲子教育合同范本
- 大学小部门活动策划方案(3篇)
- 部门考核协议
- 2025年全国海船船员适任理论考试(船舶管理8505)(轮机部)强化练习题及答案
- 罗湖区数学试卷
- 2025年检测人员考核试题及答案
- 河南省洛阳市宜阳县2024-2025学年七年级下学期期末考试数学试卷(含答案)
- 房产抵押合同范本标准模板
- 针刺伤的预防与处理
- 2025年中盐安徽红四方肥业股份有限公司招聘笔试参考题库附带答案详解
- GB/T 17642-2025土工合成材料非织造布复合土工膜
- ISO 37001-2025 反贿赂管理体系要求及使用指南(中文版-雷泽佳译-2025)
- 中等职业学校英语课程标准(2020年版)(word精排版)
- 医院消毒供应中心外来器械管理流程教材44课件
- 污水处理厂运行成本分析
- 四川中小学生健康体检表
- 空压机验证方案(拟定)
评论
0/150
提交评论