已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
灌阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=2 xR,x22x+30的否定是( )A不存在xR,使x22x+30BxR,x22x+30CxR,x22x+30DxR,x22x+303 已知圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,则直线l的方程为()Ax+y=0Bx+y=2Cxy=2Dxy=24 若直线与曲线:没有公共点,则实数的最大值为( )A1BC1D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力5 sin45sin105+sin45sin15=( )A0BCD16 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D7 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D8 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆9 复数Z=(i为虚数单位)在复平面内对应点的坐标是( )A(1,3)B(1,3)C(3,1)D(2,4) 10抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)11已知集合(其中为虚数单位),则( )A B C D12已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D二、填空题13球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为14某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种15设向量a(1,1),b(0,t),若(2ab)a2,则t_16已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想17已知是定义在上函数,是的导数,给出结论如下:若,且,则不等式的解集为; 若,则;若,则;若,且,则函数有极小值;若,且,则函数在上递增其中所有正确结论的序号是 18已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为三、解答题19如图,四棱锥PABCD中,PD平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,求证:PCBC;()求三棱锥CDEG的体积;()AD边上是否存在一点M,使得PA平面MEG若存在,求AM的长;否则,说明理由 20已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值21衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率. 22在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨迹为曲线(1)求曲线的方程;111(2)过点作互相垂直的两条直线,与曲线交于,两点与曲线交于,两点,线段,的中点分别为,求证:直线过定点,并求出定点的坐标23【淮安市淮海中学2018届高三上第一次调研】已知函数.(1)当时,求满足的的取值;(2)若函数是定义在上的奇函数存在,不等式有解,求的取值范围;若函数满足,若对任意,不等式恒成立,求实数的最大值.24如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 灌阳县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题2 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,xR,x22x+30的否定是:xR,x22x+30故选:C3 【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(2,2),圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,点(0,0)与(2,2)关于直线l对称,设直线l方程为y=kx+b,k=1且=k+b,解得k=1,b=2,故直线方程为xy=2,故选:D4 【答案】C【解析】令,则直线:与曲线:没有公共点,等价于方程在上没有实数解假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故又时,知方程在上没有实数解,所以的最大值为,故选C 5 【答案】C【解析】解:sin45sin105+sin45sin15=cos45cos15+sin45sin15=cos(4515)=cos30=故选:C【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题6 【答案】B【解析】考点:三角函数的图象与性质7 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式8 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.9 【答案】A【解析】解:复数Z=(1+2i)(1i)=3+i在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题10【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键11【答案】D【解析】考点:1.复数的相关概念;2.集合的运算12【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.二、填空题13【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力14【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏15【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:216【答案】1【解析】17【答案】【解析】解析:构造函数,在上递增, ,错误;构造函数,在上递增,正确;构造函数,当时,错误;由得,即,函数在上递增,在上递减,函数的极小值为,正确;由得,设,则,当时,当时,当时,即,正确18【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:2三、解答题19【答案】 【解析】解:(I)证明:PD平面ABCD,PDBC,又ABCD是正方形,BCCD,PDICE=D,BC平面PCD,又PC面PBC,PCBC(II)解:BC平面PCD,GC是三棱锥GDEC的高E是PC的中点,(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA平面MEG下面证明之:E为PC的中点,O是AC的中点,EO平面PA, 又EO平面MEG,PA平面MEG,PA平面MEG,在正方形ABCD中,O是AC中点,OCGOAM,所求AM的长为 【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想20【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin(B+C)sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB=,则B=60;()ABC的面积为=acsinB=ac,解得:ac=4,又b=2,由余弦定理可得:22=a2+c2ac=(a+c)23ac=(a+c)212,解得:a+c=4,联立解得:a=c=221【答案】(1);(2) .【解析】111试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有种情况,其中第组的名志愿者至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1 (2)记第3组的3名志愿者为,第4组的2名志愿者为,则从5名志愿者中抽取2名志愿者有,共10种,其中第4组的2名志愿者至少有一名志愿者被抽中的有,共7种,所以第4组至少有一名志愿都被抽中的概率为.考点:1、分层抽样的应用;2、古典概型概率公式.22【答案】() ;()证明见解析;【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,则直线:,由得,考点:曲线的轨迹方程;直线与抛物线的位置关系【易错点睛】导数法解决函数的单调性问题:(1)当不含参数时,可通过解不等式直接得到单调递增(或递减)区间(2)已知函数的单调性,求参数的取值范围,应用条件恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是不恒等于的参数的范围23【答案】(1)(2),6【解析】试题解析:(1)由题意,化简得解得,所以(2)因为是奇函数,所以,所以化简并变形得:要使上式对任意的成立,则解得:,因为的定义域是,所以舍去所以,所以对任意有:因为,所以,所以,因此在R上递减因为,所以,即在时有解所以,解得:,所以的取值范围为因为,所以即所以不等式恒成立,即,即:恒成立令,则在时恒成立令,时,所以在上单调递减时,所以在上单调递增所以,所以所以,实数m的最大值为6 考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。24【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NEOC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025液化天然气运输船制造行业供需分析及投资配置发展探讨报告
- 2025氢能储运技术经济性对比研究报告
- 2025智能穿戴设备发展分析及用户行为与品牌竞争格局研究报告
- 2025智慧城市行业市场发展分析及前景趋势与资本运作策略研究报告
- 2025旅游目的地开发策略与投资回报分析报告
- 家具行业家具安装师傅面试试题及答案剖析
- 高速竞赛自行车行业2026-2030年产业发展现状及未来发展趋势分析研究
- 家具销售员销售团队激励策略试题及答案
- 小学公开课教案编写示范及要求
- 小学四年级语文古诗词默写练习题
- GB/T 21782.4-2025粉末涂料第4部分:爆炸下限的计算
- 2025年宏观经济学试题库及练习题及答案
- 2025黑龙江齐齐哈尔市龙沙区南航街道公益性岗位招聘1人笔试考试参考题库附答案解析
- 高中化学教学质量分析与提升策略
- 2025年机场货运区安全生产月试题及答案
- 2025国家公务员政治理论应知应会知识试题库及答案
- 2025年给排水科学与工程专升本水处理试卷(含答案)
- 《中国乳腺癌诊疗指南》(2025版)
- 高三试卷:山东省名校考试联盟2024-2025学年高三上学期期中考试政治试题
- 《翅片式换热器生产制造工艺规范》
- 长沙市一中2026届高三10月月考试卷(二)生物试卷(含答案详解)
评论
0/150
提交评论