




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
邢台市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 复数Z=(i为虚数单位)在复平面内对应点的坐标是( )A(1,3)B(1,3)C(3,1)D(2,4) 2 双曲线的左右焦点分别为,过的直线与双曲线的右支交于两点,若是以为直角顶点的等腰直角三角形,则( )A B C D3 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111A2对 B3对 C4对 D6对4 已知直线l1 经过A(3,4),B(8,1)两点,直线l2的倾斜角为135,那么l1与l2( )A垂直B平行C重合D相交但不垂直5 已知双曲线kx2y2=1(k0)的一条渐近线与直线2x+y3=0垂直,则双曲线的离心率是( )ABC4D6 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D27 已知集合M=x|x21,N=x|x0,则MN=( )ABx|x0Cx|x1Dx|0x1可8 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种9 双曲线的渐近线方程是( )ABCD10曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x511设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D12如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D31二、填空题13设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是14已知sin+cos=,且,则sincos的值为15若全集,集合,则 。16【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为_.171785与840的最大约数为18【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两个零点,则正实数的值为_三、解答题19已知是等差数列,是等比数列,为数列的前项和,且,()(1)求和;(2)若,求数列的前项和20已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+21在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题答题终止后,获得的总分决定获奖的等次若甲是被抽到的答题同学,且假设甲答对问题的概率分别为()记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;()你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由22已知函数()求曲线在点处的切线方程;()设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围23(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由24如图,在四棱锥PABCD中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点,求证:(1)直线EF平面PCD;(2)平面BEF平面PAD邢台市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:复数Z=(1+2i)(1i)=3+i在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题2 【答案】C【解析】试题分析:设,则,因为,所以,解得,所以,在直角三角形中,由勾股定理得,因为,所以,所以.考点:直线与圆锥曲线位置关系【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方.111.Com3 【答案】B【解析】试题分析:三棱锥中,则与、与、与都是异面直线,所以共有三对,故选B考点:异面直线的判定4 【答案】A【解析】解:由题意可得直线l1的斜率k1=1,又直线l2的倾斜角为135,其斜率k2=tan135=1,显然满足k1k2=1,l1与l2垂直故选A5 【答案】A【解析】解:由题意双曲线kx2y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=x故=,k=,可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证6 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题7 【答案】D【解析】解:由已知M=x|1x1,N=x|x0,则MN=x|0x1,故选D【点评】此题是基础题本题属于以不等式为依托,求集合的交集的基础题,8 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想9 【答案】B【解析】解:双曲线标准方程为,其渐近线方程是=0,整理得y=x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程属于基础题10【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易11【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B12【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题二、填空题13【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a214【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:15【答案】|01【解析】,|01。16【答案】【解析】17【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10518【答案】【解析】考查函数,其余条件均不变,则:当x0时,f(x)=x+2x,单调递增,f(1)=1+210,由零点存在定理,可得f(x)在(1,0)有且只有一个零点;则由题意可得x0时,f(x)=axlnx有且只有一个零点,即有有且只有一个实根。令,当xe时,g(x)0,g(x)递减;当0x0,g(x)递增。即有x=e处取得极大值,也为最大值,且为,如图g(x)的图象,当直线y=a(a0)与g(x)的图象只有一个交点时,则.回归原问题,则原问题中.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围三、解答题19【答案】(1),或,;(2).【解析】试题解析:(1)设的公差为,的公比为, 由题意得解得或,或,(2)若,由(1)知,考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.20【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题21【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】()的可能取值为,分布列为:()设先回答问题,再回答问题得分为随机变量,则的可能取值为,分布列为:应先回答所得分的期望值较高22【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】()函数定义域为,又,所求切线方程为,即()函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根等价于在上恰有两个不同的实根,令则当时,在递减;当时,在递增故,又,即23【答案】(1);(2)万;(3).【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;月均用水量低于3吨的频率为:;则吨1考点:频率分布直方图 24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【语文】成都市小学四年级下册期末试题
- 单元测试第二单元圆柱和圆锥提高题无答案
- 数学人教六年级下册期末重点小学试题经典套题答案
- 2025监理建设工程合同管理试题及答案
- 电力营销技能考核试题及答案库装表接电
- 2025年青海省试验检测师之交通工程题库及答案
- 2025年规程试题及参考答案
- 安全双重预防工作机制实施方案
- 意式美食节活动策划方案
- 铁牛营销方案
- 2019年医疗器械体外诊断与病理诊断行业分析报告
- DL-T2078.2-2021调相机检修导则第2部分:保护及励磁系统
- 国开(河北)2024年《中外政治思想史》形成性考核1-4答案
- 新起点大学英语综合教程1
- 小学数学添括号去括号简便计算练习100道及答案
- 师德师风考核表
- 三年级上册语文必考点1-8单元按课文内容填空专项练习
- 《一、圆锥曲线的光学性质及其应用》教学设计(部级优课)-数学教案
- 书写板卫生安全要求
- 装配钳工高级试题与答案
- GB/T 27809-2011热固性粉末涂料用双酚A型环氧树脂
评论
0/150
提交评论