




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
锦江区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对2 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,则的解析式为( )A BC D【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.3 利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%4 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力5 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=56 已知集合M=0,1,2,则下列关系式正确的是( )A0MB0MC0MD0M7 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=8 已知在ABC中,a=,b=,B=60,那么角C等于( )A135B90C45D759 已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD1310在长方体ABCDA1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )ABCD 11定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)12 在区间上恒正,则的取值范围为( )A B C D以上都不对二、填空题13圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为14在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD15小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 16x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是17已知椭圆+=1(ab0)上一点A关于原点的对称点为B,F为其左焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为18若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 三、解答题19已知点(1,)是函数f(x)=ax(a0且a1)的图象上一点,等比数列an的前n项和为f(n)c,数列bn(bn0)的首项为c,且前n项和Sn满足SnSn1=+(n2)记数列前n项和为Tn,(1)求数列an和bn的通项公式;(2)若对任意正整数n,当m1,1时,不等式t22mt+Tn恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1mn,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由 20(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设是等比数列,且,求数列的前n项和【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用21已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+22为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性()根据已知条件完成下面的22列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计()将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率P(K2k)0.050.01k3.8416.635附:K2=23如图1,在RtABC中,C=90,BC=3,AC=6,D、E分别是AC、AB上的点,且DEBC,将ADE沿DE折起到A1DE的位置,使A1DCD,如图2()求证:平面A1BC平面A1DC;()若CD=2,求BD与平面A1BC所成角的正弦值;()当D点在何处时,A1B的长度最小,并求出最小值24(14分)已知函数,其中m,a均为实数(1)求的极值; 3分(2)设,若对任意的,恒成立,求的最小值; 5分(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围 6分锦江区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题2 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图象,再将的图象向上平移3个单位得到函数的图象,因此 .3 【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目4 【答案】D【解析】由已知得,故,故选D5 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法6 【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确对于D,是元素与集合的关系,错用集合的关系,所以不正确故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用7 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题8 【答案】D【解析】解:由正弦定理知=,sinA=,ab,AB,A=45,C=180AB=75,故选:D9 【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题10【答案】C【解析】解:如图,设A1C1B1D1=O1,B1D1A1O1,B1D1AA1,B1D1平面AA1O1,故平面AA1O1面AB1D1,交线为AO1,在面AA1O1内过B1作B1HAO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在RtA1O1A中,A1O1=,AO1=3,由A1O1A1A=hAO1,可得A1H=,故选:C【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题11【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题12【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.二、填空题13【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=514【答案】 【解析】解:法1:取A1C1的中点D,连接DM,则DMC1B1,在在直三棱柱中,ACB=90,DM平面AA1C1C,则MAD是AM与平面AA1C1C所的成角,则DM=,AD=,则tanMAD=法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则AC=BC=1,侧棱AA1=,M为A1B1的中点,=(,),=(0,1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为,则sin=|=则tan=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键15【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题16【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题17【答案】,1 【解析】解:设点A(acos,bsin),则B(acos,bsin)(0);F(c,0);AFBF,=0,即(cacos,bsin)(c+acos,bsin)=0,故c2a2cos2b2sin2=0,cos2=2,故cos=,而|AF|=,|AB|=2c,而sin=,sin,+,即,解得,e1;故答案为:,1【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用18【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=0三、解答题19【答案】 【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=f(2)cf(1)c=,a3=f(3)cf(2)c=因为数列an是等比数列,所以,所以c=1又公比q=,所以;由题意可得: =,又因为bn0,所以;所以数列是以1为首项,以1为公差的等差数列,并且有;当n2时,bn=SnSn1=2n1;所以bn=2n1(2)因为数列前n项和为Tn,所以 =;因为当m1,1时,不等式恒成立,所以只要当m1,1时,不等式t22mt0恒成立即可,设g(m)=2tm+t2,m1,1,所以只要一次函数g(m)0在m1,1上恒成立即可,所以,解得t2或t2,所以实数t的取值范围为(,2)(2,+)(3)T1,Tm,Tn成等比数列,得Tm2=T1Tn,结合1mn知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题20【答案】【解析】(1)设等差数列的首项为,公差为,则由,得,解得,3分所以,即,即5分21【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题22【答案】 【解析】解:()由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成22列联表如下:非歌迷歌迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得:K2=3.030因为3.0303.841,所以我们没有95%的把握认为“歌迷”与性别有关()由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为=(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)其中ai表示男性,i=1,2,3,bi表示女性,i=1,2由10个等可能的基本事件组成用A表示“任选2人中,至少有1个是女性”这一事件,则A=(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2) ,事件A由7个基本事件组成P(A)= 12【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型23【答案】【解析】【分析】()在图1中,ABC中,由已知可得:ACDE在图2中,DEA1D,DEDC,即可证明DE平面A1DC,再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下沉市场消费金融趋势分析及发展机遇报告
- 药品管理相关管理制度
- 药品销售制度管理制度
- 药店内部各项管理制度
- 药店收银制度管理制度
- 莆田社保流程管理制度
- 设备事故定损管理制度
- 设备变更作业管理制度
- 设备定期维护管理制度
- 设备材料采购管理制度
- 2025年北京市高考英语试卷真题(含答案解析)
- 2025年高考物理广西卷试题真题及答案详解(精校打印)
- 国家开放大学本科《商务英语4》一平台机考真题及答案(第四套)
- 2024年湖北省中考地理生物试卷(含答案)
- 2024年甘肃省天水市中考生物·地理试题卷(含答案)
- GA 1016-2012枪支(弹药)库室风险等级划分与安全防范要求
- 2022年小学六年级毕业监测科学素养测试题试卷 (含答题卡)
- 行政赔偿与行政补偿课件
- 继电器接触器控制的基本线路.ppt
- 最新国家开放大学电大《国际私法》机考3套真题题库及答案2
- (完整版)《普通心理学-彭聃龄》知识要点
评论
0/150
提交评论