琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44952 一个四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A2+B1+CD3 利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a1)0成立的概率是( )ABCD4 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D315 (2011辽宁)设sin(+)=,则sin2=( )ABCD6 函数y=(x25x+6)的单调减区间为( )A(,+)B(3,+)C(,)D(,2)7 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D68 已知双曲线=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=x,则该双曲线的方程为( )A=1By2=1Cx2=1D=19 设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D10袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD11已知角的终边经过点,则的值为( )A B C. D012已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D二、填空题13不等式的解为14已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:(,)的渐近线恰好过点,则双曲线的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.15考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于16在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是17命题p:xR,函数的否定为18不等式的解集为R,则实数m的范围是 三、解答题19如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)()求四棱锥CFDEO的体积()如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE平面CDO?若存在,请加以证明;若不存在,请说明理由20函数f(x)=Asin(x+)(A0,0,|)的一段图象如图所示 (1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数 21已知集合P=x|2x23x+10,Q=x|(xa)(xa1)0(1)若a=1,求PQ;(2)若xP是xQ的充分条件,求实数a的取值范围22(本小题12分)设是等差数列,是各项都为正数的等比数列,且,.111(1)求,的通项公式;(2)求数列的前项和.23已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.24已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值琼山区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题2 【答案】A【解析】解:四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,原四边形为直角梯形,且CD=CD=1,AB=OB=,高AD=20D=2,直角梯形ABCD的面积为,故选:A3 【答案】C【解析】解:由ln(3a1)0得a,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a1)0成立的概率是P=,故选:C4 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题5 【答案】A【解析】解:由sin(+)=sincos+cossin=(sin+cos)=,两边平方得:1+2sincos=,即2sincos=,则sin2=2sincos=故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题6 【答案】B【解析】解:令t=x25x+6=(x2)(x3)0,可得 x2,或 x3,故函数y=(x25x+6)的定义域为(,2)(3,+)本题即求函数t在定义域(,2)(3,+)上的增区间结合二次函数的性质可得,函数t在(,2)(3,+)上的增区间为 (3,+),故选B7 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题8 【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=x,则有a2+b2=c2=10和=,解得a=3,b=1所以双曲线的方程为:y2=1故选B【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用属于基础题9 【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B10【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题11【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.12【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C二、填空题13【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出14【答案】15【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键16【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:417【答案】x0R,函数f(x0)=2cos2x0+sin2x03 【解析】解:全称命题的否定是特称命题,即为x0R,函数f(x0)=2cos2x0+sin2x03,故答案为:x0R,函数f(x0)=2cos2x0+sin2x03,18【答案】 【解析】解:不等式,x28x+200恒成立可得知:mx2+2(m+1)x+9x+40在xR上恒成立显然m0时只需=4(m+1)24m(9m+4)0,解得:m或m所以m故答案为:三、解答题19【答案】 【解析】解:()如图1,弦CD垂直平分半径OA,半径为2,CF=DF,OF=,在RtCOF中有COF=60,CF=DF=,CE为直径,DECD,OFDE,DE=2OF=2,图2中,平面ACB平面ADE,平面ACB平面ADE=AB,又CFAB,CF平面ACB,CF平面ADE,则CF是四棱锥CFDEO的高,()在劣弧BC上是存在一点P(劣弧BC的中点),使得PE平面CDO证明:分别连接PE,CP,OP,点P为劣弧BC弧的中点,COF=60,COP=60,则COP为等边三角形,CPAB,且,又DEAB且DE=,CPDE且CP=DE,四边形CDEP为平行四边形,PECD,又PE面CDO,CD面CDO,PE平面CDO【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题20【答案】 【解析】解:(1)由函数的图象可得A=3, T=4,解得=再根据五点法作图可得+=0,求得=,f(x)=3sin(x)(2)令2kx2k+,kz,求得 5kx5k+,故函数的增区间为5k,5k+,kz函数的最大值为3,此时, x=2k+,即 x=5k+,kz,即f(x)的最大值为3,及取到最大值时x的集合为x|x=5k+,kz(3)设把f(x)=3sin(x)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数即y=3sin(x+)则由(x+m)=x+,求得m=,把函数f(x)=3sin(x)的图象向左平移个单位,可得y=3sin(x+)=3cosx 的图象【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin(x+)的图象变换规律,属于基础题21【答案】 【解析】解:(1)当a=1时,Q=x|(x1)(x2)0=x|1x2则PQ=1(2)aa+1,Q=x|(xa)(xa1)0=x|axa+1xP是xQ的充分条件,PQ,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型22【答案】(1);(2).【解析】(2),6分,.8分-得,10分所以.12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设的公差为,的公比为,根据等差数列和等比数列的通项公式,联立方程求得和,进而可得,的通项公式;(2)数列的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和.23【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4124【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代入点P(3,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论