




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
永德县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 定义运算,例如若已知,则=( )ABCD2 设函数f(x)=则不等式f(x)f(1)的解集是( )A(3,1)(3,+)B(3,1)(2,+)C(1,1)(3,+)D(,3)(1,3)3 若函数是偶函数,则函数的图象的对称轴方程是( )111.ComA B C D4 向高为H的水瓶中注水,注满为止如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是( )ABCD5 已知空间四边形,、分别是、的中点,且,则( )A B C D6 已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)7 函数y=sin(2x+)图象的一条对称轴方程为( )Ax=Bx=Cx=Dx=8 设aR,且(ai)2i(i为虚数单位)为正实数,则a等于( )A1B0C1D0或19 九章算术是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD3丈,长AB4丈,上棱EF2丈,EF平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是( )A4立方丈 B5立方丈C6立方丈 D8立方丈 10设实数,则a、b、c的大小关系为( )AacbBcbaCbacDabc11下列命题中正确的是( )A复数a+bi与c+di相等的充要条件是a=c且b=dB任何复数都不能比较大小C若=,则z1=z2D若|z1|=|z2|,则z1=z2或z1=12已知,则方程的根的个数是( ) A3个B4个 C5个D6个 二、填空题13抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为14抛物线的准线与双曲线的两条渐近线所围成的三角形面积为_15已知tan=,tan()=,其中,均为锐角,则=16在(2x+)6的二项式中,常数项等于(结果用数值表示)17长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是18在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是三、解答题19如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 。20【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化其中半圆的圆心为,半径为,矩形的一边在直径上,点、在圆周上,、在边上,且,设(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?21已知函数的定义域为集合,(1)求,;(2)若,求实数的取值范围.22如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60()求证:AC平面BDE;()求二面角FBED的余弦值;()设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论23已知函数,(1)求函数的单调区间;(2)若存在,使得成立,求的取值范围;(3)设,是函数的两个不同零点,求证:24(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力永德县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题2 【答案】A【解析】解:f(1)=3,当不等式f(x)f(1)即:f(x)3如果x0 则 x+63可得 x3,可得3x0如果 x0 有x24x+63可得x3或 0x1综上不等式的解集:(3,1)(3,+)故选A3 【答案】A【解析】试题分析:函数向右平移个单位得出的图象,又是偶函数,对称轴方程为,的对称轴方程为.故选A考点:函数的对称性.4 【答案】 A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系如图所示,此时注水量V与容器容积关系是:V水瓶的容积的一半对照选项知,只有A符合此要求故选A【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题5 【答案】A【解析】试题分析:取的中点,连接,根据三角形中两边之和大于第三边,两边之差小于第三边,所以,故选A考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题6 【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题7 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=k+,kz,求得x=,可得它的图象的对称轴方程为x=,kz,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题8 【答案】B【解析】解:(ai)2i=2ai+2为正实数,2a=0,解得a=0故选:B【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题9 【答案】【解析】解析:选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GHMNAD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥EAGHD与四棱锥FMBCN与直三棱柱EGHFMN.由题意得GHMNAD3,GMEF2,EPFQ1,AGMBABGM2,所求的体积为V(S矩形AGHDS矩形MBCN)EPSEGHEF(23)13125立方丈,故选B.10【答案】A【解析】解:,b=20.120=1,00.90=1acb故选:A11【答案】C【解析】解:A未注明a,b,c,dRB实数是复数,实数能比较大小C =,则z1=z2,正确;Dz1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确故选:C12【答案】C【解析】由,设f(A)=2,则f(x)=A,则,则A=4或A=,作出f(x)的图像,由数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。二、填空题13【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题14【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:15【答案】 【解析】解:tan=,均为锐角,tan()=,解得:tan=1,=故答案为:【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题16【答案】240 【解析】解:由(2x+)6,得=由63r=0,得r=2常数项等于故答案为:24017【答案】50 【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50故答案为:50【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力18【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题三、解答题19【答案】【解析】(1)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得P(A1)=0。1+0。2+0。3=0。6,P(A2)=0。1+0。4=0。5,P(A1) P(A2),甲应选择LiP(B1)=0。1+0。2+0。3+0。2=0。8,P(B2)=0。1+0。4+0。4=0。9,P(B2) P(B1),乙应选择L2。(2)A,B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知,又由题意知,A,B独立,20【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.21【答案】(1),;(2)或。【解析】试题分析:(1)由题可知:,所以,因此集合,画数轴表示出集合A,集合B,观察图形可求,观察数轴,可以求出,则;(2)由可得:,分类讨论,当时,解得:,当时,若,则应满足,即,所以,因此满足的实数的取值范围是:或。试题解析:(1):由得:, =(2)当B=时,当时,即或 。考点:1.函数的定义域;2.集合的运算;3.集合间的关系。22【答案】【解析】【分析】(I)由已知中DE平面ABCD,ABCD是边长为3的正方形,我们可得DEAC,ACBD,结合线面垂直的判定定理可得AC平面BDE;()以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角FBED的余弦值;()由已知中M是线段BD上一个动点,设M(t,t,0)根据AM平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置【解答】证明:()因为DE平面ABCD,所以DEAC因为ABCD是正方形,所以ACBD,从而AC平面BDE(4分)解:()因为DA,DC,DE两两垂直,所以建立空间直角坐标系Dxyz如图所示因为BE与平面ABCD所成角为600,即DBE=60,所以由AD=3,可知,则A(3,0,0),B(3,3,0),C(0,3,0),所以,设平面BEF的法向量为=(x,y,z),则,即令,则=因为AC平面BDE,所以为平面BDE的法向量,所以cos因为二面角为锐角,所以二面角FBED的余弦值为(8分)()点M是线段BD上一个动点,设M(t,t,0)则因为AM平面BEF,所以=0,即4(t3)+2t=0,解得t=2此时,点M坐标为(2,2,0),即当时,AM平面BEF(12分)23【答案】()的单调递增区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金矿尾矿处理与资源化利用技术考核试卷
- 酿造食品企业的法律法规遵守与合规考核试卷
- 慢性阻塞性肺疾病疾病查房
- 急救仪器使用与维护指南
- 急性呼吸窘迫综合征护理要点
- 呼吸机脱机指征标准
- Cladosporide-C-生命科学试剂-MCE
- 2025年新高考数学一轮复习讲义(学生版)
- 食品饮料行业2025年包装废弃物处理与资源化利用研究报告
- 2025年睡眠医疗市场趋势预测:诊疗服务模式创新与行业可持续发展路径
- 第五章健康保障制度
- 2023年副主任医师(副高)-中西医结合内科学(副高)考试参考题库附带答案
- 北京市海淀区八年级下学期期末考试语文试题
- DB5206T16-2018梵净山茶叶加工场所基本条件
- 学习乡村振兴知识竞赛100题及答案
- 种植基地管理手册
- 工业机器人操作与运维考试中级理论知识模拟试题
- 带货主播直播脚本21篇
- 广东省广州市2018-2022年近五年中考英语试卷Word版附答案
- 动物园主题认识数字1-5幼儿教育教学PPT课件(含完整内容)
- 树枝状水系长江亚马孙河
评论
0/150
提交评论