




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
港口区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知(0,),且sin+cos=,则tan=( )ABCD2 设命题p:,则p为()A BC D3 在数列中,则该数列中相邻两项的乘积为负数的项是( )A和 B和 C和 D和4 在ABC中,则这个三角形一定是( )A等腰三角形B直角三角形C等腰直角三角D等腰或直角三角形5 设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D106 下列结论正确的是( )A若直线l平面,直线l平面,则B若直线l平面,直线l平面,则C若直线l1,l2与平面所成的角相等,则l1l2D若直线l上两个不同的点A,B到平面的距离相等,则l7 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,48 执行如图所示的程序框图,则输出的S等于( )A19B42C47D899 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D210已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)11已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D812以过椭圆+=1(ab0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交B相切C相离D不能确定二、填空题13已知|=1,|=2,与的夹角为,那么|+|=14某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .15已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 16已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=17Sn=+=18下列四个命题:两个相交平面有不在同一直线上的三个公交点经过空间任意三点有且只有一个平面过两平行直线有且只有一个平面在空间两两相交的三条直线必共面其中正确命题的序号是三、解答题19如图,在三棱柱ABCA1B1C1中,底面ABC是边长为2的等边三角形,D为AB中点(1)求证:BC1平面A1CD;(2)若四边形BCC1B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值20(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,垂足分别为,且记为点到直线的距离,为点到直线的距离,为点到点的距离,试探索是否存在最值?若存在,请求出最值.21(本题满分15分)正项数列满足,(1)证明:对任意的,;(2)记数列的前项和为,证明:对任意的,【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.22.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 23【南通中学2018届高三10月月考】设,函数,其中是自然对数的底数,曲线在点处的切线方程为.()求实数、的值;()求证:函数存在极小值;()若,使得不等式成立,求实数的取值范围.24由四个不同的数字1,2,4,x组成无重复数字的三位数(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x港口区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:将sin+cos=两边平方得:(sin+cos)2=1+2sincos=,即2sincos=0,0,sincos0,(sincos)2=12sincos=,即sincos=,联立解得:sin=,cos=,则tan=故选:D2 【答案】A【解析】【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题,p为:。故答案为:A3 【答案】C【解析】考点:等差数列的通项公式4 【答案】A【解析】解:,又cosC=,=,整理可得:b2=c2,解得:b=c即三角形一定为等腰三角形故选:A5 【答案】B【解析】本题考查了对数的计算、列举思想a时,不符;a0时,ylog2x过点(,1),(1,0),此时b0,b1符合;a时,ylog2(x)过点(0,1),(,0),此时b0,b1符合;a1时,ylog2(x1)过点(,1),(0,0),(1,1),此时b1,b1符合;共6个6 【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交故选:B【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础7 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题8 【答案】B【解析】解:模拟执行程序框图,可得k=1S=1满足条件k5,S=3,k=2满足条件k5,S=8,k=3满足条件k5,S=19,k=4满足条件k5,S=42,k=5不满足条件k5,退出循环,输出S的值为42故选:B【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题9 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键10【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用11【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力12【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MNl于N根据圆锥曲线的统一定义,可得=e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD|,以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)圆M到l的距离|MN|r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题二、填空题13【答案】 【解析】解:|=1,|=2,与的夹角为,=1=1|+|=故答案为:【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题14【答案】【解析】考点:分层抽样方法15【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的位置关系的应用.16【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题17【答案】 【解析】解: =(),Sn=+= (1)+()+()+()=(1)=,故答案为:【点评】本题主要考查利用裂项法进行数列求和,属于中档题18【答案】 【解析】解:两个相交平面的公交点一定在平面的交线上,故错误;经过空间不共线三点有且只有一个平面,故错误;过两平行直线有且只有一个平面,正确;在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是,故答案为:三、解答题19【答案】 【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,D为AB的中点,DOBC1,BC1平面A1CD,DO平面A1CD,BC1平面A1CD 解:底面ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,CDAB,CD=,AD=1,AD2+AA12=A1D2,AA1AB,CDDA1,又DA1AB=D,CD平面ABB1A1,BB1平面ABB1A1,BB1CD,矩形BCC1B1,BB1BC,BCCD=CBB1平面ABC,底面ABC是等边三角形,三棱柱ABCA1B1C1是正三棱柱以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,2,),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为,则sin=直线A1D与平面CBB1C1所成角的正弦值为20【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线是椭圆,将直线:代入椭圆的方程中,得由直线与椭圆有且仅有一个公共点知,整理得 7分且,当时,设直线的倾斜角为,则,即 10分 当时,11分当时,四边形为矩形,此时, 12分综上、可知,存在最大值,最大值为 13分21【答案】(1)详见解析;(2)详见解析. 22【答案】(1)();(2).【解析】试题分析:(1)根据可求得函数的单调递减区间;(2)由可得,再由三角形面积公式可得,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1),令,解得,的单调递减区间为().考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用23【答案】();()证明见解析;().【解析】试题分析:()利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;()结合()中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(),由题设得,;()由()得,函数在是增函数,且函数图像在上不间断,使得,结合函数在是增函数有:)递减极小值递增函数存在极小值;(),使得不等式成立,即,使得不等式成立(*),令,则,结合()得,其中,满足,即,在内单调递增,结合(*)有,即实数的取值范围为24【答案】 【解析】【专题】计算题;排列组合【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18(1+2+4+x),解可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粮食储备的社区粮食安全计划考核试卷
- 酿酒行业节能减排措施考核试卷
- 道路工程测绘技术考核试卷
- 遥感技术在应急管理与救援中的应用考核试卷
- 组织结构优化与流程再造考核试卷
- 常见心脏疾病手术方式
- 新生儿NICU出科报告
- 麻醉专业就业分析研究
- Quadrilineatin-生命科学试剂-MCE
- 9-Heptadecanone-Heptadecan-9-one-生命科学试剂-MCE
- 路灯养护投标方案(技术方案)
- 国家开放大学电大本科《管理英语4》期末试题题库及答案(试卷号:1389)
- 询价投标文件(范本)
- 去小学化家长培训讲座课件
- 单光纤光镊数值仿真和光阱力计算的中期报告
- 一份完整的卤菜店创业计划书 工作计划
- 手术物品清点手术室护理实践指南课件
- 中国铝业股份有限公司偃师市东沟铝土矿矿山地质环境保护与土地复垦方案
- 2023-2024学年河南省濮阳市小学语文五年级期末通关考试题附参考答案和详细解析
- 国语经典歌曲歌词接龙考试题库(180题)
- 2021年暖通工程师专业基础考试真题及答案
评论
0/150
提交评论