




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
通道侗族自治县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+2 已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )A2BCD3 已知命题p:xR,2x3x;命题q:xR,x3=1x2,则下列命题中为真命题的是( )ApqBpqCpqDpq4 已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da35 如果集合 ,同时满足,就称有序集对为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么“好集对” 一共有( )个 A个 B个 C个 D个6 在等比数列an中,已知a1=3,公比q=2,则a2和a8的等比中项为( )A48B48C96D967 A=x|x1,B=x|x2或x0,则AB=( )A(0,1) B(,2)C(2,0) D(,2)(0,1)8 数列中,对所有的,都有,则等于( )A B C D9 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)10已知函数f(x)是(,0)(0,+)上的奇函数,且当x0时,函数的部分图象如图所示,则不等式xf(x)0的解集是( )A(2,1)(1,2)B(2,1)(0,1)(2,+)C(,2)(1,0)(1,2)D(,2)(1,0)(0,1)(2,+)11如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等( )ABCD12在中,角,的对边分别是,为边上的高,若,则到边的距离为( )A2 B3 C.1 D4二、填空题13已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程14已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为15设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是16已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个17如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 18已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 三、解答题19设an是公比小于4的等比数列,Sn为数列an的前n项和已知a1=1,且a1+3,3a2,a3+4构成等差数列(1)求数列an的通项公式;(2)令bn=lna3n+1,n=12求数列bn的前n项和Tn20如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;21设函数f(x)=lnxax2bx(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2x3)其图象上任意一点P(x0,y0)处切线的斜率k恒成立,求实数a的取值范围;(3)当a=0,b=1时,方程f(x)=mx在区间1,e2内有唯一实数解,求实数m的取值范围 22已知曲线(,)在处的切线与直线平行(1)讨论的单调性;(2)若在,上恒成立,求实数的取值范围23(1)直线l的方程为(a+1)x+y+2a=0(aR)若l在两坐标轴上的截距相等,求a的值;(2)已知A(2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程24已知数列an和bn满足a1a2a3an=2(nN*),若an为等比数列,且a1=2,b3=3+b2(1)求an和bn;(2)设cn=(nN*),记数列cn的前n项和为Sn,求Sn通道侗族自治县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目2 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=2x+z,由图可知zmax=21+1=3,zmin=2a+a=3a,由6a=3,得a=故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题3 【答案】B【解析】解:因为x=1时,2131,所以命题p:xR,2x3x为假命题,则p为真命题令f(x)=x3+x21,因为f(0)=10,f(1)=10所以函数f(x)=x3+x21在(0,1)上存在零点,即命题q:xR,x3=1x2为真命题则pq为真命题故选B4 【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A5 【答案】B【解析】试题分析:因为,所以当时,;当时,;当时,;当时,;当时,;当时,;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111 6 【答案】B【解析】解:在等比数列an中,a1=3,公比q=2,a2=32=6,=384,a2和a8的等比中项为=48故选:B7 【答案】D【解析】解:A=(,1),B=(,2)(0,+),AB=(,2)(0,1),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键8 【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式9 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反10【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)0的解为:或解得:x(,2)(1,0)(0,1)(2,+)故选:D11【答案】C【解析】解:M、G分别是BC、CD的中点,=, =+=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为+,是解答本题的关键12【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.二、填空题13【答案】+=1 【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,圆C:(x+4)2+y2=100的圆心为C(4,0),半径R=10,由动圆B与圆C相内切,可得|CB|=Rr=10|BD|,圆B经过点A(4,0),|BD|=|BA|,得|CB|=10|BA|,可得|BA|+|BC|=10,|AC|=810,点B的轨迹是以A、C为焦点的椭圆,设方程为(ab0),可得2a=10,c=4,a=5,b2=a2c2=9,得该椭圆的方程为+=1故答案为: +=114【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题15【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题16【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题17【答案】 【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能18【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件三、解答题19【答案】 【解析】解:(1)设等比数列an的公比为q4,a1+3,3a2,a3+4构成等差数列23a2=a1+3+a3+4,6q=1+7+q2,解得q=2(2)由(1)可得:an=2n1bn=lna3n+1=ln23n=3nln2数列bn的前n项和Tn=3ln2(1+2+n)=ln220【答案】(1)证明见解析;(2).【解析】试题解析:(2)在三角形中,由,得,则,底面平面,平面平面,且平面平面,平面,则平面平面,在平面内,过作,交于,连结,则为直线与平面所成角。在中,由,得,所以直线与平面所成角的正弦值为1考点:立体几何证明垂直与平行21【答案】 【解析】解:(1)依题意,知f(x)的定义域为(0,+)当a=2,b=1时,f(x)=lnxx2x,f(x)=2x1=令f(x)=0,解得x=当0x时,f(x)0,此时f(x)单调递增;当x时,f(x)0,此时f(x)单调递减所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+)(2)F(x)=lnx+,x2,3,所以k=F(x0)=,在x02,3上恒成立,所以a(x02+x0)max,x02,3当x0=2时,x02+x0取得最大值0所以a0(3)当a=0,b=1时,f(x)=lnx+x,因为方程f(x)=mx在区间1,e2内有唯一实数解,所以lnx+x=mx有唯一实数解m=1+,设g(x)=1+,则g(x)=令g(x)0,得0xe; g(x)0,得xe,g(x)在区间1,e上是增函数,在区间e,e2上是减函数,1 0分g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1m1+ 22【答案】(1)在,上单调递增,在,上单调递减;(2).【解析】试题解析:(1)由条件可得,由,可得,由,可得解得或;由,可得解得或所以在,上单调递增,在,上单调递减(2)令,当,时,由,可得在,时恒成立,即,故只需求出的最小值和的最大值由(1)可知,在上单调递减,在上单调递增,故的最小值为,由可得在区间上恒成立,所以在上的最大值为,所以只需,所以实数的取值范围是.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).23【答案】 【解析】解:(1)当a=1时,直线化为y+3=0,不符合条件,应舍去;当a1时,分别令x=0,y=0,解得与坐标轴的交点(0,a2),(,0)直线l在两坐标轴上的截距相等,a2=,解得a=2或a=0;(2)A(2,4),B(4,0),线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年杭州市上城区望江街道社区卫生服务中心招聘编外1人考前自测高频考点模拟试题及答案详解一套
- 2025广西壮族自治区中医骨伤科研究所广西骨伤医院招聘实名编制人员(高级职称)3人模拟试卷附答案详解(突破训练)
- 2025包头市东河区招聘政府专职消防员9人考前自测高频考点模拟试题及答案详解(易错题)
- 2025年绥化市庆安县急需紧缺教师校园招聘36人模拟试卷附答案详解(黄金题型)
- 2025国有四大银行远程银行中心诚聘客服代表考前自测高频考点模拟试题及答案详解(夺冠)
- 小学安全培训体会博客课件
- 2025江苏南通市海安经济技术开发区立发办事处招聘公益性岗位人员1人考前自测高频考点模拟试题及答案详解一套
- 2025年湖南湘能多经产业(集团)有限公司招聘约90名高校毕业生(第三批)模拟试卷及答案详解(易错题)
- HO-PEG36-OH-生命科学试剂-MCE
- 2025年江苏省港口集团社会招聘模拟试卷及参考答案详解
- 机加工安全生产培训考核试题及答案(班组级)(精)
- 电梯从业证考试试题及答案解析
- 第二十四届上海市青少年计算机创新应用竞赛 python校内选拔试题及答案
- 2024年武汉商学院公开招聘辅导员笔试题含答案
- 江苏省宿迁市泗阳县2024-2025学年高二下册期末调研测试语文试题【附答案】
- 2025年《传染病防治法》综合培训试题(附答案)
- 储能电站项目实施方案
- 墙布工厂工程定制方案(3篇)
- 2025年工勤技师考试题库及答案
- 新鲜的牛肉采购合同范本
- 2025至2030年中国室内亲子游乐场行业市场评估分析及投资发展盈利预测报告
评论
0/150
提交评论