铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(1)_第1页
铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(1)_第2页
铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(1)_第3页
铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(1)_第4页
铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(1)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 若直线与曲线:没有公共点,则实数的最大值为( )A1BC1D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力2 等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D43 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D4 已知三个数,成等比数列,其倒数重新排列后为递增的等比数列的前三项,则能使不等式成立的自然数的最大值为( )A9 B8 C.7 D55 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A, B, CV|VDV|0V6 设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD7 下列命题的说法错误的是( )A若复合命题pq为假命题,则p,q都是假命题B“x=1”是“x23x+2=0”的充分不必要条件C对于命题p:xR,x2+x+10 则p:xR,x2+x+10D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”8 有下列四个命题:“若a2+b2=0,则a,b全为0”的逆否命题;“全等三角形的面积相等”的否命题;“若“q1”,则x2+2x+q=0有实根”的逆否命题;“矩形的对角线相等”的逆命题其中真命题为( )ABCD9 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力10在中,则等于( )A B C或 D211将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD12一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化二、填空题13已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 14下列命题:终边在y轴上的角的集合是a|a=,kZ;在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;函数y=sin(x)在0,上是减函数其中真命题的序号是15的展开式中的系数为 (用数字作答)16在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形17设幂函数的图象经过点,则= 18设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件三、解答题19已知p:2x23x+10,q:x2(2a+1)x+a(a+1)0(1)若a=,且pq为真,求实数x的取值范围(2)若p是q的充分不必要条件,求实数a的取值范围20已知圆C经过点A(2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点()求圆C的方程;()若,求实数k的值;()过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值21已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离22(本小题满分13分)如图,已知椭圆:的离心率为,以椭圆的左顶点为圆心作圆:(),设圆与椭圆交于点、_k.Com(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程;(3)设点是椭圆上异于、的任意一点,且直线,分别与轴交于点(为坐标原点),求证:为定值 【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力23(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据: 赞同 反对合计男50 150200女30 170 200合计 80320 400()能否有能否有的把握认为对这一问题的看法与性别有关?()从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率参考公式:,【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力24已知函数f(x)=ax2+2xlnx(aR)()若a=4,求函数f(x)的极值;()若f(x)在(0,1)有唯一的零点x0,求a的取值范围;()若a(,0),设g(x)=a(1x)22x1ln(1x),求证:g(x)在(0,1)内有唯一的零点x1,且对()中的x0,满足x0+x11 铁东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】C【解析】令,则直线:与曲线:没有公共点,等价于方程在上没有实数解假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故又时,知方程在上没有实数解,所以的最大值为,故选C 2 【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B3 【答案】B【解析】由题意,可取,所以4 【答案】C 【解析】试题分析:因为三个数等比数列,所以,倒数重新排列后恰好为递增的等比数列的前三项,为,公比为,数列是以为首项,为公比的等比数列,则不等式等价为,整理,得,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式.5 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为122=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是V|0V故选:D【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目6 【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题7 【答案】A【解析】解:A复合命题pq为假命题,则p,q至少有一个命题为假命题,因此不正确;B由x23x+2=0,解得x=1,2,因此“x=1”是“x23x+2=0”的充分不必要条件,正确;C对于命题p:xR,x2+x+10 则p:xR,x2+x+10,正确;D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,正确故选:A8 【答案】B【解析】解:由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;若x2+2x+q=0有实根,则=44q0,解得q1,因此“若“q1”,则x2+2x+q=0有实根”的逆否命题是真命题;“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题综上可得:真命题为:故选:B【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题9 【答案】B 10【答案】C【解析】考点:余弦定理11【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档12【答案】B【解析】考点:棱柱、棱锥、棱台的体积二、填空题13【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.14【答案】 【解析】解:、终边在y轴上的角的集合是a|a=,kZ,故错误;、设f(x)=sinxx,其导函数y=cosx10,f(x)在R上单调递减,且f(0)=0,f(x)=sinxx图象与轴只有一个交点f(x)=sinx与y=x 图象只有一个交点,故错误;、由题意得,y=3sin2(x)+=3sin2x,故正确;、由y=sin(x)=cosx得,在0,上是增函数,故错误故答案为:【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键15【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3所以系数为:故答案为:16【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:17【答案】【解析】试题分析:由题意得考点:幂函数定义18【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分三、解答题19【答案】 【解析】解:p:,q:axa+1;(1)若a=,则q:;pq为真,p,q都为真;,;实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;,;实数a的取值范围为【点评】考查解一元二次不等式,pq真假和p,q真假的关系,以及充分不必要条件的概念20【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得POQ=120,计算圆心到直线l:kxy+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1x2+y1y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k0时,设,则,代入消元得(1+k2)x2+2kx3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值【解答】解:(I)设圆心C(a,a),半径为r因为圆经过点A(2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,(2分)所以圆C的方程是x2+y2=4(4分)(II)方法一:因为,(6分)所以,POQ=120,(7分)所以圆心到直线l:kxy+1=0的距离d=1,(8分)又,所以k=0(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx3=0(6分)由题意得:(7分)因为=x1x2+y1y2=2,又,所以x1x2+y1y2=,(8分)化简得:5k23+3(k2+1)=0,所以k2=0,即k=0(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S因为直线l,l1都经过点(0,1),且ll1,根据勾股定理,有,(10分)又根据垂径定理和勾股定理得到,(11分)而,即(13分)当且仅当d1=d时,等号成立,所以S的最大值为7(14分)方法二:设四边形PMQN的面积为S当直线l的斜率k=0时,则l1的斜率不存在,此时(10分)当直线l的斜率k0时,设则,代入消元得(1+k2)x2+2kx3=0所以同理得到(11分)=(12分)因为,所以,(13分)当且仅当k=1时,等号成立,所以S的最大值为7(14分)21【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题22【答案】【解析】(1)依题意,得,;故椭圆的方程为 (3分) (3)设 由题意知:,.直线的方程为令 得,同理:,.(10分)又点在椭圆上,故,即为定值. (13分)23【答案】【解析】()根据题中的数据计算:因为6255024,所以有975%的把握认为对这一问题的看法与性别有关()由已知得抽样比为,故抽出的8人中,男士有5人,女士有3人分别设为,选取2人共有,28个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为24【答案】【解析】满分(14分)解法一:()当a=4时,f(x)=4x2+2xlnx,x(0,+),(1分)由x(0,+),令f(x)=0,得当x变化时,f(x),f(x)的变化如下表:xf(x)0+f(x)极小值故函数f(x)在单调递减,在单调递增,(3分)f(x)有极小值,无极大值(4分)(),令f(x)=0,得2ax2+2x1=0,设h(x)=2ax2+2x1则f(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;(5分)当a0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论